Stabilitätsnachweis einer Stütze unter Normalkraft und Biegung

  • Knowledge Base

Fachbeitrag

In diesem Fachbeitrag soll eine Pendelstütze mit einer mittig angreifenden Normalkraft und einer auf die starke Achse wirkenden Linienlast mit Hilfe des Zusatzmoduls RF-/STAHL EC3 nach EN 1993-1-1 nachgewiesen werden.

Die Systemannahmen, Belastungen, Schnittgrößen und der Querschnittsnachweis wurden bereits in einem früheren Beitrag erläutert und werden daher nicht erneut angesprochen.

Bild 01 - System

Nachweis unter Normalkraft und Biegemoment nach EN 1993-1-1, 6.3.3 [1]

Bauteile welche durch Biegung und Druck beansprucht werden, müssen in der Regel folgende Anforderungen erfüllen.

Nachweis gegen Biegeknicken:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Nachweis gegen Biegedrillknicken:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Nachweis gegen Biegeknicken um die schwache Achse

$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Die Knicklänge der Pendelstütze beträgt Lcr = 6,50 m.

Nach EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0,2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm z}}}\\{\mathrm N}_{\mathrm{cr},\mathrm z}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21.000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;10.140\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;4.974,28\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180,6\;\mathrm{cm}^2\;\cdot23,5\;\mathrm{kN}/\mathrm{cm}^2}{4.974,28\;\mathrm{kN}}}\;=\;0,924$

Auswahl der Knicklinie nach Tabelle 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1,2\;\leq\;1,2\\{\mathrm t}_{\mathrm f}\;=\;22,5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Ausweichen rechtwinklig zur z-Achse: Knickspannungslinie KSLz: c

Aus Tabelle 6.1 ergibt sich der Imperfektionsbeiwert α = 0,49.
$\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;0,49\;\cdot\;\left(0,924\;-\;0,2\right)\;+\;0,924^2\right]\;=\;1,104\\{\mathrm\chi}_{\mathrm z}\;=\;\frac1{1,104\;+\;\sqrt{1,104^2\;-\;0,924^2}}\;=\;0,585\;\leq\;1,0$

Für I-, H- und rechteckige Hohlquerschnitte, welche nur auf Druck und Biegung belastet werden, darf der Beiwert kzy = 0 angenommen werden.

Dadurch ergibt sich der Nachweis wie folgt:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;\leq\;1\\{\mathrm N}_{\mathrm{Rk}\;}=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180,60\;\mathrm{cm}^2\;\cdot\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^2}\;=\;\;4.244,1\;\mathrm{kN}\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,585\;\cdot\;4.244,1\;\mathrm{kN}}1}\;=\;0,81\;\leq\;1$

→ Nachweis ist erfüllt.

Nachweis gegen Biegedrillknicken

Die Knicklänge der Pendelstütze beträgt auch hier Lcr = 6,50 m.

Nach EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0,2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm y}}}\\{\mathrm N}_{\mathrm{cr},\mathrm y}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm y}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21.000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;43.190\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;21.187,3\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180,6\;\mathrm{cm}^2\;\cdot23,5\;\mathrm{kN}/\mathrm{cm}^2}{21.187,3\;\mathrm{kN}}}\;=\;0,924$

Knicklänge nach Tabelle 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1,2\;\leq\;1,2\\{\mathrm t}_{\mathrm f}\;=\;22,5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Ausweichen rechtwinklig zur y-Achse: Knickspannungslinie KSLz: b
Aus Tabelle 6.1 ergibt sich der Imperfektionsbeiwert α = 0,34.
$\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;0,34\;\cdot\;\left(0,448\;-\;0,2\right)\;+\;0,448^2\right]\;=\;0,642\\{\mathrm\chi}_{\mathrm y}\;=\;\frac1{0,642\;+\;\sqrt{0,642^2\;-\;0,448^2}}\;=\;0,907\;\leq\;1,0$

Interaktionsfaktor nach Anhang B, Tab. B1:
${\mathrm k}_{\mathrm{yy}}\;=\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;\left({\overline{\mathrm\lambda}}_{\mathrm y}\;-\;0,2\right)\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)\;\leq\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;0,8\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)$

Äquivalenter Momentenbeiwert Cmy nach Tabelle B.3:
${\mathrm\alpha}_{\mathrm h}\;=\;\frac{{\mathrm M}_{\mathrm h}}{{\mathrm M}_{\mathrm s}}\;=\;\frac{0,00\;\mathrm{kNm}}{79,22\;\mathrm{kNm}}\;=\;0\\{\mathrm C}_{\mathrm{my}}\;=\;0,95\;+\;0,05\;\cdot\;{\mathrm\alpha}_{\mathrm h}\;=\;0,95\\{\overline{\mathrm\lambda}}_{\mathrm y}\;=\;0,448\\{\mathrm N}_{\mathrm{Rk}}\;=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180,60\;\mathrm{cm}^2\;\cdot\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^2\;\;}\;=\;4.244,1\;\mathrm{kN}\\{\mathrm k}_{\mathrm{yy}}\;=\;0,95\;\cdot\;\left(1\;+\;\left(0,448\;-\;0,2\right)\;\cdot\;\frac{2.000\;\mathrm{kN}}{0,907\;\cdot\;{\displaystyle\frac{4.244,10\;\mathrm{kN}}{1,0}}}\right)\;=\;1,07\\{\mathrm k}_{\mathrm{yy},\max}\;=\;0,95\;\cdot\;\left(1\;+\;0,8\;\cdot\;\frac{2.000\;\mathrm{kN}}{0,907\;\cdot\;{\displaystyle\frac{4.244,10\;\mathrm{kN}}{1,0}}}\right)\;=\;1,34\\1,07\;<\;1,34$

Nach EN 1993-1-1, 6.3.2.3:
${\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{{\mathrm\phi}_{\mathrm{LT}}\;+\;\sqrt{{\mathrm\phi}_{\mathrm{LT}}^2\;-\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2}}\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0,5\;\cdot\;\left[1\;+\;{\mathrm\alpha}_{\mathrm{LT}}\;\cdot\;\left({\overline{\mathrm\lambda}}_{\mathrm{LT}}\;-\;{\overline{\mathrm\lambda}}_{\mathrm{LT}0}\right)\;+\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2\right]$

Nach EN 1993-1-1, Tab. 6.5:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1,20\;<\;2$ → Biegedrillknicklinie KLLT: b

Nach EN 1993-1-1, Tab. 6.3:
${\mathrm\alpha}_{\mathrm{LT}}\;=\;0,34\\\mathrm\beta\;=\;0,75\\{\mathrm\lambda}_{\mathrm{LT}0}\;=\;0,40\\{\mathrm M}_{\mathrm{cr}}\;=\;{\mathrm C}_1\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\left(\mathrm k\;\cdot\;\mathrm L\right)^2}\;\cdot\;\left(\sqrt{\left(\frac{\mathrm k}{{\mathrm k}_{\mathrm W}}\right)\;\cdot\;\frac{{\mathrm I}_{\mathrm W}}{{\mathrm I}_{\mathrm z}}\;+\;\frac{\left(\mathrm k\;\cdot\;\mathrm L\right)^2\;\cdot\;\mathrm G\;\cdot\;{\mathrm I}_{\mathrm t}}{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}\;+\left({\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\right)^2\;}\;-\;{\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\;\right)\\\mathrm k\;=\;1,0\\{\mathrm k}_{\mathrm w}\;=\;1,0$

C1 und C2 aus Tabelle 3.2 NCCI: Elastisches kritisches Biegedrillknickmoment [5] (kompatible Ergänzungsdokumente zu Eurocode 3):
C1 = 1,127
C2 = 0,454

Abstand des Lastangriffspunktes zum Schubmittelpunkt zg = 18 cm.

${\mathrm M}_{\mathrm{cr}}\;=\;1,127\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;21.000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10.140\;\mathrm{cm}^4}{\left(1\;\cdot\;650\;\mathrm{cm}\right)^2}\;\cdot\;\left(\sqrt{\left(\frac11\right)\;\cdot\;\frac{2.883.000\;\mathrm{cm}^6}{10.140\;\mathrm{cm}^4}\;+\;\frac{\left(1,0\;\cdot\;650\;\mathrm{cm}\right)^2\;\cdot\;8.076,92\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;292,5\;\mathrm{cm}^4}{\mathrm\pi^2\;\cdot\;21.000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10.140\;\mathrm{cm}^4}\;+\;\left(0,454\;\cdot\;18\;\mathrm{cm}\right)^2\;}\;-\;0,454\;\cdot\;18\;\mathrm{cm}\;\right)\\{\mathrm M}_{\mathrm{cr}}\;=\;115.310\;\mathrm{kNcm}\;=\;1.153,10\;\mathrm{kNm}\\{\overline{\mathrm\lambda}}_{\mathrm{LT}}\;=\;\sqrt{\frac{{\mathrm W}_{\mathrm{pl},\mathrm y}\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm M}_{\mathrm{cr}}}}\;=\;\sqrt{\frac{2.683\;\mathrm{cm}^3\;\cdot\;23,5\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}}{115.310\;\mathrm{kNcm}}}\;=\;0,739\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0,5\;\cdot\;\left[1\;+\;0,34\;\cdot\;\left(0,739\;-\;0,4\right)\;+\;0,75\;\cdot\;0,739^2\right]\;=\;0,762\\{\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{0,762\;+\;\sqrt{0,762^2\;-\;0,75\;\cdot\;0,739^2}}\;=\;0,85\;<\;1$

Nach EN 1993-1-1, Tab. 6.7:
${\mathrm M}_{\mathrm y,\mathrm{Rk}}\;=\;{\mathrm f}_{\mathrm y}\;\cdot\;{\mathrm W}_{\mathrm{pl},\mathrm y}\;=\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^{2\;}}\;\cdot\;2.683\;\mathrm{cm}^3\;=\;63.050,5\;\mathrm{kNcm}\;=\;630,51\;\mathrm{kNm}$

Nachweis Knicken um die starke Achse:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,907\;\cdot\;4.244.10\;\mathrm{kN}}{1,0}}\;+\;1,072\;\cdot\;\frac{79,22\;\mathrm{kNm}}{0,85\;\cdot\;{\displaystyle\frac{630,51\;\mathrm{kNm}}{1,0}}}\;=\;0,67\;\leq\;1$

Nachweis Knicken um die schwache Achse:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,585\;\cdot\;4.244.10\;\mathrm{kN}}{1,0}}\;+\;0,894\;\cdot\;\frac{79,22\;\mathrm{kNm}}{0,85\;\cdot\;{\displaystyle\frac{630,51\;\mathrm{kNm}}{1,0}}}\;=\;0,93\;\leq\;1$

→ Nachweise erfüllt.

Autor

Dipl.-Ing. (BA) Sandy Matula

Dipl.-Ing. (BA) Sandy Matula

Customer Support

Frau Matula kümmert sich im Kundensupport um die Anliegen unserer Anwender.

Schlüsselwörter

Nachweis Stabilität Stabilitätsnachweis einer Stütze Pendelstütze Normalkraft Biegung Biegeknicken

Literatur

[1]   Eurocode 3: Bemessung und Konstruktion von Stahlbauten − Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Beuth Verlag GmbH, Berlin, 2010
[2]   Handbuch RF-/STAHL EC3. Tiefenbach: Dlubal Software, Juni 2020.
[3]   Albert, A.: Schneider - Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen, 23. Auflage. Köln: Bundesanzeiger, 2018
[4]   Kuhlmann, U.; Feldmann, M.; Lindner, J.; Müller, C.; Stroetmann, R.: Eurocode 3 Bemessung und Konstruktion von Stahlbauten - Band 1: Allgemeine Regeln und Hochbau - DIN EN 1993-1-1 mit Nationalem Anhang, Kommentar und Beispiele. Berlin: Beuth, 2014
[5]   Bureau, A.: NCCI: Elastisches kritisches Biegedrillknickmoment. Aachen: RWTH, 2010

Downloads

Links

Schreiben Sie einen Kommentar...

Schreiben Sie einen Kommentar...

  • Aufrufe 1005x
  • Aktualisiert 18. August 2020

Kontakt

Kontakt zu Dlubal

Haben Sie Fragen oder brauchen Sie einen Rat? Kontaktieren Sie uns über unseren kostenlosen E-Mail-, Chat- bzw. Forum-Support oder nutzen Sie die häufig gestellten Fragen (FAQs) rund um die Uhr.

+49 9673 9203 0

info@dlubal.com

RFEM Hauptprogramm
RFEM 5.xx

Basisprogramm

Das FEM-Programm RFEM ermöglicht die schnelle und einfache Modellierung und Berechnung von Tragkonstruktionen mit Stab-, Platten-, Scheiben-, Faltwerk-, Schalen- und Volumen-Elementen aus verschiedenen Materialien.

Erstlizenzpreis
3.540,00 USD
RFEM Stahl- und Aluminiumbau
RF-STAHL EC3 5.xx

Zusatzmodul

Bemessung von Stahlstäben nach EC 3

Erstlizenzpreis
1.480,00 USD
RSTAB Hauptprogramm
RSTAB 8.xx

Basisprogramm

Das 3D-Statik-Programm RSTAB eignet sich für die Berechnung von Stabwerken aus Stahl, Beton, Holz, Aluminium oder anderen Materialien. Mit RSTAB definieren Sie einfach und schnell das Tragwerksmodell und berechnen dann die Schnittgrößen, Verformungen und Lagerreaktionen.

Erstlizenzpreis
2.550,00 USD
RSTAB Stahl- und Aluminiumbau
STAHL EC3 8.xx

Zusatzmodul

Bemessung von Stahlstäben nach EC 3

Erstlizenzpreis
1.480,00 USD