Dome of Louvre in Abu Dhabi, United Arab Emirates

Customer Project

Structural Engineering Specialist Contractor, Structural Analysis, Execution Planning
Waagner-Biro Stahlbau AG
Vienna, Austria
Consulting Engineers
Werkraum Wien Ingenieure
Vienna, Austria
Handel Engineering GmbH
Graz, Austria

Geometry and Structure
Buro Happold Engineering
Architect Ateliers Jean Nouvel
Paris, France
Inverstor Building owner TDIC
Abu Dhabi, United Arab Emirates

With the dome of the Louvre Abu Dhabi, a museum planned in the capital of the United Arab Emirates, a new architectural highlight will be completed by 2015. The structure consisting of steel has a diameter of 180 m and covers the new local branch of the Louvre Museum in Paris.

The new museum was designed by the famous French architect Jean Nouvel. The Austrian company Waagner-Biro from Vienna has been responsible for the structural calculation and the construction of the dome.


The dome rests on only four support points arranged at a distance of 110 m, which gives the impression that the roof hovers above the museum pavilion below.

The intention of the roof covering consisting of several layers of aluminum sections is to create similar lighting conditions as they occur in an oriental bazaar where woven mats cover the narrow streets. In this way, the dome's supporting structure is visually pushed into the background.

The structural system is based on a space frame consisting of approximately 11,000 member elements with an average length of 4-5 m each. The spatial grid made of triangles and quadrangles was developed by Buro Happold.

The structure is supported by four resettable spherical bearings. It was important to consider their frictional resistance and the restoring force of the supports for the modeling.

The loading that acts on the structural analysis model was analyzed intensively by Waagner-Biro. They also consulted the technical planners about it. For example, the local load transfer has been considered by service meshes. When service technicians step on these meshes, the adjacent members must absorb the additional transverse loading.

The target is to get an ideal dome shape without any visible sag when it will be finished. Therefore, it was necessary to camber the structure for mounting. With this, another effect had to be taken into account in addition to the deformation components from the self-weight.

Over time, the tolerances in the bolt connections of the members will lead to a sliding of the connections, and this in turn causes further sagging of the dome.

Waagner-Biro: “A new icon of architectural steel construction is created with the dome of the Louvre Abu Dhabi.”

Contact us

Contact to Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RSTAB Steel and Aluminium Structures
STEEL EC3 8.xx

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD
RSTAB Dynamic Analysis
DYNAM Pro - Natural Vibrations 8.xx

Add-on Module

Dynamic analysis of natural frequencies and mode shapes of member models

Price of First License
850.00 USD
RSTAB Dynamic Analysis
DYNAM Pro - Forced Vibrations 8.xx

Add-on Module

Dynamic and seismic analysis including time history analysis and multi-modal response spectrum analysis

Price of First License
1,120.00 USD
RSTAB Dynamic Analysis
DYNAM Pro - Equivalent Loads 8.xx

Add-on Module

Seismic and static load analysis using the multi-modal response spectrum analysis

Price of First License
580.00 USD