Baku Flame Towers in Baku, Azerbaijan

Structures Analysed with Dlubal Software

  • Customer project

Customer Project

Since 2012, the city of Baku, capital of Azerbaijan, has a striking complex of high-rise buildings: the Baku Flame Towers. The construction consists of three towers which have the shape of a flame with a maximum height of 190 m. The flame shape designed by HOK Architects was inspired by the importance of fire for the town, as there is a high number of oil wells in the region.

Structural Engineering Facade Design and Structural Analysis of Tower Spires
Werner Sobek Stuttgart GmbH & Co. KG, Stuttgart, Germany
www.wernersobek.de
Architectural Design HOK Architects
London, UK
www.hok.com

Model

The dimensions indicated below refer to one of the three spires.

Length: ~ 35 m | Width: ~ 34 m | Height: ~ 30 m
Number of nodes: 772 | Members: 981 | Finite Elements: 981 | Materials: 2 | Cross-sections: 9

The Dlubal Software customer Werner Sobek Stuttgart was responsible for the steel spires put on the towers as well as for the spectacular facade.

Supporting Structure of Tower Spires

The main structural systems of the three towers consist of reinforced concrete. In contrast, the towers' top stories consist of filigree steel frameworks which provide spacious room for special use.

The primary framework of the spires consists of a spatial three‑hinged frame built up of round pipes with a diameter of 610 mm. Following the given geometry, the pipes were taken as biaxially curved sections to the construction site where they were connected to each other by butt welds.

To reduce deformations of the construction that is 30 m high, the vertical side steel columns were attached to the frame by bending resistant connections. A special triangular cross‑section made of typical metal sheets and round steel bars was used for these columns to allow for an outside view that is as wide as possible. This cross‑section was modeled in the Dlubal program SHAPE‑THIN and then imported to RFEM.

The wind loads that were governing for the design were determined by a wind report, reaching very high values of 7 kN/m². Therefore, additional diagonals were needed on the curved back side of the steel constructions in order to reduce the total deformation on the tower spire to the required 90 mm.

Because technical planners were working closely together in an early phase of the project, the planning was performed successfully on schedule.

Keywords

Steel

Write Comment...

Write Comment...

  • Views 975x
  • Updated 14 January 2021

Contact us

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

CSA S16: 19 Steel design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EST

Online Training | English

Eurocode 5 | Timber structures according to EN 1995-1-1

Online Training 17 March 2021 8:30 AM - 12:30 PM CET

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 18 March 2021 8:30 AM - 12:30 PM CET

Online Training | English

RFEM | Dynamics | USA

Online Training 23 March 2021 1:00 PM - 4:00 PM EST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM

RFEM for Students | USA

Online Training 21 April 2021 1:00 PM - 4:00 PM EST

RFEM | Timber | USA

Online Training 5 May 2021 1:00 PM - 4:00 PM EST

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 6 May 2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 11 May 2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 20 May 2021 8:30 AM - 12:30 PM

Online Training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 2 June 2021 8:30 AM - 12:30 PM

Online-Schulungen | English

RFEM | Basics | USA

Online Training 17 June 2021 9:00 AM - 1:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM CET

Member design according to ADM 2020 in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM CET

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM CET

FEM - Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11 November 2020 2:00 PM - 3:00 PM EST

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 27 October 2020 2:00 PM - 2:45 PM CET

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 30 September 2020 2:00 PM - 3:00 PM EST

Documenting Results in the RFEM Printout Report

Documenting Results in the RFEM Printout Report

Webinar 25 August 2020 2:00 PM - 2:45 PM

ACI 318-19 Concrete Design in RFEM

Webinar 20 August 2020 2:00 PM - 3:00 PM EST

How to Be More Productive Using RFEM

How to Be More Productive Using RFEM

Webinar 7 July 2020 3:00 PM - 4:00 PM

Introduction to Solid Modeling \n in RFEM

Introduction to Solid Modeling in RFEM

Webinar 30 June 2020 2:00 PM - 3:00 PM EST

Modeling with Solids in RFEM

Modeling with Solids in RFEM

Webinar 9 June 2020 3:00 PM - 3:45 PM

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD