W inżynierii konstrukcyjnej przewidywanie wpływu turbulentnego przepływu wiatru na konstrukcje ma kluczowe znaczenie dla bezpieczeństwa i wydajności. Modelowanie turbulencji w Computational Fluid Dynamics (CFD) pomaga w symulacji tych interakcji. Inżynierowie muszą wybrać praktyczny model turbulencji, równoważąc wydajność, dokładność i możliwości zastosowania. Typowe modele to uśredniony Navier-Stokes (RANS), niestabilny uśredniony Navier-Stokes (URANS) oraz Delayed Detached Eddy Simulation (DDES). Program RANS jest niezawodnym i ekonomicznym rozwiązaniem w przypadku stałych przepływów, URANS rejestruje zależne od czasu zjawiska dla średnich niestateczności, a DDES, hybryda RANS i symulacji dużych wirów (LES), rozwiązuje złożone struktury turbulentne. Zrozumienie mocnych stron i ograniczeń każdego modelu pomoże inżynierom wybrać najlepsze podejście do swoich potrzeb.
Rozszerzenie Wymiarowanie drewna umożliwia wymiarowanie słupów drewnianych zgodnie ze standardową metodą ASD 2018 NDS. Dokładne wyznaczenie nośności na ściskanie oraz współczynników redukcyjnych dla prętów drewnianych jest konieczne dla bezpieczeństwa konstrukcji. Poniższy artykuł weryfikuje maksymalną wytrzymałość na wyboczenie krytyczną obliczoną w module rozszerzeniowym Wymiarowanie drewna przy użyciu równań analitycznych krok po kroku zgodnie z normą NDS 2018, w tym współczynników dostosowania przy ściskaniu, skorygowanej wartości obliczeniowej na ściskanie i końcowego stopnia wyboczenia.
Jeśli dostępne są wyniki parcia powierzchniowego na budynek wywołane wiatrem, można je zastosować w modelu konstrukcyjnym w programie RFEM 6, przetworzonym przez RWIND 2 i wykorzystać jako obciążenia wiatrem do analizy statycznej w RFEM 6.
Za pomocą programów RWIND 2 i RFEM 6 można teraz obliczać obciążenia wiatrem na podstawie zmierzonego eksperymentalnie ciśnienia wiatru na powierzchnie. Zasadniczo dostępne są dwie metody interpolacji, umożliwiające rozłożenie ciśnienia mierzonego w izolowanych punktach na powierzchnie. Żądany rozkład ciśnienia można uzyskać za pomocą odpowiedniej metody i ustawień parametrów.
Stworzenie przykładu walidacyjnego dla obliczeniowej mechaniki płynów (CFD) jest kluczowym krokiem w zapewnieniu dokładności i wiarygodności wyników symulacji. Proces ten polega na porównywaniu wyników symulacji CFD z danymi eksperymentalnymi lub analitycznymi uzyskanymi w rzeczywistych sytuacjach. Celem jest ustalenie, czy model CFD może wiernie odwzorować zjawiska fizyczne, które ma symulować.
Kierunek wiatru odgrywa kluczową rolę w kształtowaniu wyników symulacji komputerowej mechaniki płynów (CFD) oraz w projektowaniu konstrukcyjnym budynków i infrastruktury. Jest to decydujący czynnik w ocenie interakcji sił wiatru z konstrukcjami, wpływających na rozkład ciśnienia wiatru, a w konsekwencji na reakcje konstrukcji.
Jeśli chodzi o obciążenia wiatrem konstrukcje budowlane zgodnie z ASCE 7, można znaleźć wiele źródeł, które mogą uzupełnić normy projektowe i pomóc inżynierom w zastosowaniu obciążeń poprzecznych. Jednak inżynierom może być trudniej znaleźć podobne zasoby dla obciążeń wiatrem na konstrukcjach innych niż budynki. W tym artykule omówiono etapy obliczania i przykładania obciążeń wiatrem zgodnie z ASCE 7-22 na okrągłym zbiorniku żelbetowym z dachem w kształcie kopuły.
Obliczenia CFD są na ogół bardzo złożone. Dokładne obliczenia przepływu wiatru wokół skomplikowanych konstrukcji są bardzo czasochłonne i kosztowne. W wielu zastosowaniach inżynierskich wysoka dokładność nie jest wymagana, a nasz program CFD RWIND 2 pozwala w takich przypadkach uprościć model konstrukcji i znacznie zredukować koszty. W tym artykule odpowiedzi na niektóre pytania dotyczące uproszczenia.
W tym artykule przedstawiono model połączenia zakładkowego płatwi ZL na dachu jednospadowym, obliczony w rozszerzeniu Połączenia stalowe i porównany z tabelą nośności podaną przez producenta.
Zgodność z przepisami budowlanymi, takimi jak Eurokod, jest niezbędna dla zapewnienia bezpieczeństwa, integralności konstrukcji i trwałości budynków i konstrukcji. Obliczeniowa mechanika płynów (CFD) odgrywa istotną rolę w tym procesie, symulując zachowanie płynów, optymalizując projekty i pomagając architektom i inżynierom w spełnieniu wymagań Eurokodu związanych z analizą obciążenia wiatrem, wentylacją naturalną, bezpieczeństwem pożarowym i efektywnością energetyczną. Integrując CFD z procesem projektowania, profesjonaliści mogą tworzyć bezpieczniejsze, wydajniejsze i zgodne z przepisami budynki, które spełniają najwyższe standardy konstrukcyjne i projektowe w Europie.
Modele wielkoskalowe to modele, które zawierają skale wielowymiarowe, a tym samym wymagają dużej mocy obliczeniowej. Z tego artykułu dowiesz się, jak uprościć i zoptymalizować obliczenia takich modeli w odniesieniu do pożądanych wyników.
Rozmiar domeny obliczeniowej (rozmiar tunelu aerodynamicznego) jest ważnym aspektem symulacji wiatru, który ma znaczący wpływ na dokładność, a także na koszt symulacji CFD.
W obliczeniowej mechanice płynów (CFD) można modelować złożone powierzchnie, które nie są całkowicie stałe, używając porowatego i przepuszczalnego medium. W świecie rzeczywistym mogą to być na przykład wiatrochrony, siatki druciane, perforowane fasady i okładziny, żaluzje, przęsła (stosy poziomych walców) i tak dalej.
Niniejszy artykuł jest związany z trwającym projektem, w ramach którego opracowywany i wdrażany jest cyfrowy bliźniak konstrukcyjny mostu Kalix w Szwecji.
Osłony przeciwwiatrowe to specjalne konstrukcje tekstylne, które mają za zadanie chronić środowisko przed szkodliwymi cząsteczkami chemicznymi, jak również ograniczać erozję wietrzną, przyczyniając się do ochrony cennych zasobów. RFEM i RWIND są używane do analizy konstrukcji wiatrowej dla jednostronnej interakcji płyn-konstrukcja (FSI). W tym artykule pokazano, jak wymiarować osłony przeciwwiatrowe przy użyciu programów RFEM i RWIND.
W artykule tym opracowano nowatorskie podejście do generowania modeli CFD na poziomie miejscowości poprzez połączenie modelowania informacji o budynku (BIM) i systemów informacji geograficznej (GIS) w celu zautomatyzowania generowania trójwymiarowego modelu terenu o wysokiej rozdzielczości, który zostanie wykorzystany jako dane wejściowe dla cyfrowego tunelu aerodynamicznego z wykorzystaniem RWIND.
RWIND 2 to program do generowania obciążeń wiatrem w oparciu o CFD (Computational Fluid Dynamics). Symulacja numeryczna przepływu wiatru jest generowana wokół dowolnego budynku, w tym budynku o nieregularnej lub unikalnej geometrii, w celu określenia obciążeń wiatrem na powierzchnie i pręty. RWIND 2 może być zintegrowany z programem RFEM/RSTAB w celu przeprowadzenia analizy statyczno-wytrzymałościowej lub jako samodzielna aplikacja.
Wraz z programami do analizy statyczno-wytrzymałościowej RFEM 6, RSTAB 9, RSECTION 1 i RWIND 2, Dlubal Software przedstawia nową generację programów do analizy statyczno-wytrzymałościowej. Zgodnie z mottem "Analiza statyczno-wytrzymałościowa, która sprawia przyjemność ...", program zapewnia użytkownikom uniwersalne narzędzia, dzięki którym mogą oni spełnić wszystkie wymagania inżynierii konstrukcyjnej. W tym artykule dowiesz się więcej o najnowszych osiągnięciach w firmie Dlubal Software.
RWIND 2 to program do generowania obciążeń wiatrem w oparciu o CFD (Computational Fluid Dynamics). Symulacja numeryczna przepływu wiatru jest generowana wokół dowolnego budynku, w tym o nieregularnej lub niepowtarzalnej geometrii, w celu określenia obciążenia wiatrem powierzchni i prętów. RWIND 2 może być zintegrowany z programem RFEM/RSTAB w celu przeprowadzenia analizy statyczno-wytrzymałościowej lub jako samodzielna aplikacja.
Norma dotycząca konstrukcji stalowych AISC 360-16 wymaga uwzględnienia stateczności konstrukcji jako całości oraz każdego z jej elementów. Dostępne są różne metody, w tym metoda bezpośredniego uwzględnienia w analizie, metoda długości efektywnej i metoda analizy bezpośredniej. W tym artykule podkreślono ważne wymagania rozdz. C oraz metodę bezpośredniej analizy, która zostanie uwzględniona w modelu konstrukcji stalowej wraz z zastosowaniem w programie RFEM 6.
Efekty obciążenia śniegiem są opisane w amerykańskiej normie ASCE/SEI 7-16 oraz w Eurokodzie 1, części od 1 do 3. Normy te zostały zaimplementowane w nowym programie RFEM 6 oraz w Kreatorze obciążenia śniegiem, ułatwiającym wprowadzanie obciążeń śniegiem. Ponadto najnowsza generacja programu umożliwia zdefiniowanie lokalizacji inwestycji na mapie cyfrowej, a tym samym automatyczne zaimportowanie strefy obciążenia śniegiem. Dane te są z kolei wykorzystywane przez Kreatora obciążeń do symulacji efektów spowodowanych obciążeniem śniegiem.
W tym artykule wyjaśniono zastosowanie powierzchni z typem sztywności "Przenoszenie obciążenia" w programie RFEM 6. Pokazano również praktyczny przykład, w którym można zademonstrować, jak na stalową halę można oddziaływać ciężarem własnym, śniegiem i wiatrem.
Ponieważ w Eurokodzie nie uwzględniono wiatru oddziałującego na konstrukcje otwarte z jednej strony, odniesiono się do czterech przypadków z niemieckiej normy DIN 1055, część czwarta.
Projektowanie szkła izolacyjnego w pionie wymaga przypisania różnych obciążeń do poszczególnych warstw całej szyby zespolonej. Dzieje się tak na przykład w przypadku jednoczesnego oddziaływania obciążenia wiatrem i zabezpieczenia przed upadkiem z wysokości.