568x
003271
2024-01-16

节点支座

支座是将作用在结构体系上的荷载传递到基础上的装置。 如果没有支座,所有的节点都是自由的,可以自由移动或转动。 如果一个节点要作为支座,那么必须至少要有一个自由度被限制(包括通过弹簧限制)。 此外,节点必须是杆件的一部分。

重要

在考虑节点支座的自由度时,请注意连接杆件的边界条件,以避免出现双铰。

节点的强制变形只适用于有支座的节点。

如果想要给节点支座分配非线性属性,那么可以选择定义受拉或受压的失效准则、撕裂或屈服,以及刚度图。

用户自定义的节点支座会在名称中自动显示出支座的自由度。 软件中预先定义好的支座类型有以下几种:

  • 铰接
  • 固定
  • 可动
  • X‘ 方向可动
  • Y' 方向可动

基本

【基本】选项卡中管理着面支座的各项基本参数。

坐标系

每个节点支座都有一个局部坐标系。 默认情况下,该坐标系与全局坐标系 X、Y 和 Z 平行。 如果您已经创建了一个用户自定义坐标系,或者使用了 新建 按钮进行了定义,那么您也可以将这个作为参照坐标系使用。

提示

使用功能 特定方向,可以在不创建新的坐标系的情况下将支座与对象对齐。

支座条件

“支座条件” 分为 “平动” 和 “移动”,对应着线上的节点的三个平动自由度和三个转动自由度。 在“平动”中用户可以定义支座对线上的节点沿局部坐标轴平动的约束,“转动”中用户可以定义支座对线上的节点绕局部坐标轴转动的约束。

如果想要定义约束,则需要勾选相应的复选框。 勾选意味着限制自由度,节点不可能在相应的方向上进行移动或转动。

未勾选的自由度将会被杆件支座完全约束。 其相应的“弹簧常数”将会自动设为零。 您可以在任何时候调整“弹簧常数”来模拟节点的弹性支座。 输入弹簧刚度的设计值。

用户可以在“非线性”下拉菜单中选择各种非线性杆端铰。 根据不同的自由度,在非线性列表中可以选择合适的选项。

非线性支座在模型中与常规支座的颜色不同,以便用户区分。

“如果 P 为负,则失效”和“如果 P 为正,则失效”

对于该类型的支座,如果支座支座反力为正或负, 如果在定义失效的方向上出现力或弯矩,那么支座在该方向上的约束失效。 但在其他方向上的约束仍正常工作。

'负'或'正'方向是指相对于相应轴施加于节点支座上的力或弯矩(不是指在支座一侧的反力)。支座)。 正负号是根据全局坐标系的方向得出: 例如,如果全局 Z 轴向下,则在“自重”荷载工况中会产生正的支座反力 PZ

“如果 P 为负,则全部失效”和“如果 P 为正,则全部失效”

与上面介绍的只是支座的某个约束失效不同,如果在定义失效的方向上出现力或弯矩,则支座的所有约束都会失效。

如果想要定义其他非线性,那么可以选择在部分作用图表或者摩擦选项卡中定义相关参数。

选项

使用该对话框部分中的复选框可以定义节点支座的其他属性。 根据选择的情况,添加特定方向刚度(通过虚柱)选项卡。

特定方向

在“特定方向”选项卡中提供了用于旋转支座的不同方法。 这些方法都不需要创建用户自定义坐标系。

方向类型

调整支座方向的方法有: 您可以围绕支座 X '、Y ' 和 Z ' 旋转支座,将支座与一个或两个节点对齐,或平行于杆件布置。 相关对象可以通过 单独选择 按钮以图形方式选择。

信息

旋转后的节点支座的支座反力不仅可以根据全局,还可以根据局部坐标系计算得出。

通过虚拟柱的刚度

对于二维结构体系的点状支承,特别推荐使用“通过虚拟柱的刚度”选项卡。 在这里您可以根据模型中未显示的柱子的参数来确定支座弹簧常数。 RSTAB 根据边界条件确定支座的弹簧刚度。 与节点中的固定支座相比,它们使得建模能够更好地描述实际。

参数

我们使用一个弹性节点支座作为支座 ' 的 ' 模型。 位移弹簧和扭转弹簧的刚度取决于您在该选项卡中定义的柱的几何数据和材料数据。

'柱帽'的几何形状可以通过柱子的旋转来描述为矩形或圆形。

'柱高'影响平移和转动弹簧的常数。

柱截面和材料

在确定弹簧刚度时,需要知道柱子的截面属性和材料属性。 如果柱子不是'与柱头相同'(非矩形或圆形),则可以在列表中选择相应的柱子截面或定义一个新的截面。

从列表中选择'柱材料'。 使用 库 新建 按钮创建一个新的材料。

柱条件

在计算平移和转动弹簧时,柱头和柱脚的支座类型包括在内。 用户可以在“方向类型”下拉菜单中选择旋转线栅格的方式:

  • 铰接
  • 半刚性
  • 固定

当选择'半刚性'选项时,可以以百分比形式指定柱基部的约束程度。

在确定刚度时,默认情况下会考虑柱子的 '抗剪刚度'。

由虚拟柱产生的支座弹簧

在本节中列出了由柱子的几何形状和材料属性得出的支座弹簧的常数。 数值将被保存至 "基本" 选项卡中。

部分作用

支座的部分作用是作为支座的非线性属性提供的(见图'''image022466'''选择支座非线性)。

用户在非线性支座中选择“部分作用”后,可以在【部分作用】选项卡中修改支座非线性的各项具体参数。 符号规则在 Failure 部分中进行了说明。 在'类型'列表中提供了关于支座有效性的各种准则。

  • 完全: 支座正常工作,按照【基本】中定义的参数进行自由度约束
  • 支座位移/旋转后生效: 在支座达到一定位移或转角之前,支座按照半刚性或铰接约束自由度; 超出定义的最大值后完全约束该方向上的自由度。
  • 从支座反力/弯矩开始撕裂: 在支座反力达到一定数值之前,支座正常工作; 超出定义的最大值,则支座失效退出工作。
  • 从支座反力/弯矩开始屈服: 在支座反力达到一定数值之前,支座正常工作; 接触应力超过规定值后,应力不再随应变增加
  • 失效: 支座退出工作,不再约束该方向上的自由度。

大部分支座的失效准则中都可以定义支座滑移,即支座产生一定转动或位移后才会开始工作。

图表

支座组件示意图作为支座的非线性属性提供(见图选择支座非线性)。

信息

如果支座的受压和受拉时力学性能不同,需取消勾选左下角的 对称 复选框。

用户可以在图表中输入线铰每个变形对应的力,每一行对应着右侧曲线中的一个点。 在'力'或'弯矩'列中,位移或转角的横坐标值可以与支座的力或弯矩一起分配。

提示

用户可以使用 导入Excel文件 按钮可以将图表从 Excel 电子表格导入。 使用 排序 按钮进行升序排序。

用户可以在下拉菜单中选择不同的类型定义曲线在最后一个点后的形状:

  • 撕裂: 支座只在定义的最大值之前正常工作, 超出定义的最大值,则支座失效退出工作。
  • 屈服: 支座只在定义的最大值之前正常工作, 接触应力超过规定值后,应力不再随应变增加
  • 连续: 以最后一个点处的斜率继续延伸
  • 停止: 在定义的容许变形最大值之前正常工作, 超出定义的最大值后完全约束该方向上的自由度。

刚度图

支座的刚度图是作为旋转支座的非线性属性提供的。

信息

如果支座的受压和受拉时力学性能不同,需取消勾选左下角的 对称 复选框。

首先,在'刚度取决于'列表(底部选项卡)中定义与弹簧常数相关的支座反力的分量。 |P|选项 表示产生的支座反力。

然后,通过在'力'列中输入相应的值来定义工作图定义点的数量。 接下来,您可以在'弹簧'列中分配相应的支座弹簧常数。

用户可以在下拉菜单中选择不同的类型定义曲线在最后一个点后的形状:

  • 撕裂: 支座只在力的最大值之前有效。 超出定义的最大值,则支座失效退出工作。
  • 屈服: 支座只在力的最大值之前有效。 接触应力超过规定值后,应力不再随应变增加
  • 连续: 以最后一个点处的斜率继续延伸

摩擦

在'非线性'列表中,有四种选项可以帮助您定义根据另一个支座分量的平移支座的摩擦力(见图 选择支座非线性)。

传递的支座反力与作用在另一个方向上的压力相关。 根据在'主'选项卡中的选择,摩擦力只取决于一个支座力或两个同时作用的支座力的总和。 两者之间的关系式如下:

FAQ 003537 介绍了如何考虑节点支座上的摩擦力。

以下列模型显示了通过摩擦传递水平力的支座。 但是,水平力不得超过竖向力的 10%。 在 LC 1 中满足该条件。 在 LC 2 中,由于水平荷载过大,模型变得不稳定。

父截面