14424x
001625
28.2.2020

Klopení dřevěných konstrukcí | Teorie

Štíhlé nosníky namáhané ohybem s velkým poměrem h/b, které jsou zatíženy rovnoběžně s vedlejší osou, jsou náchylné ke ztrátě stability. K tomu dochází v důsledku vybočení tlačené pásnice.

U nosníku lze pozorovat příčný posun při současném natočení (viz obr. 01). Mluvíme o prostorovém vzpěru, respektive klopení. Podobně jako u rovinného vzpěru, kdy prut při dosažení kritického Eulerova zatížení náhle vybočí, dochází při klopení k vybočení tlačené pásnice při kritickém zatížení. V průřezu vzniká kritický ohybový moment Mcrit, který vyvolává kritické ohybové napětí σcrit.

Použité symboly:
L ... délka nosníku
E ... modul pružnosti
G ... smykový modul
Iz ... moment setrvačnosti okolo hlavní osy nejmenší tuhosti
IT ... moment tuhosti
Iω ... výsečový moment setrvačnosti
az ... vzdálenost působiště zatížení od středu smyku
e ... vzdálenost pružného uložení prutu od středu smyku
KG ... rotační pružina na podpoře v Nmm
KΘ ... pružné torzní uložení v N
Ky ... pružné podloží prutu v N/mm²

Analytická metoda stanovení Mcrit

Pro stanovení ohybového momentu, při kterém nosník ztrácí stabilitu, nám odborná literatura nabízí analytická řešení, pro jejichž použití ovšem platí určitá omezení. Pro prostý nosník s klouby na obou koncích a s uložením bránícím torznímu natočení, na něhož působí zatížení ve středu smyku a ohybový moment vykazuje konstantní průběh, je v [1] odvozena následující rovnice:

U průřezů bez omezení deplanace (například v případě úzkých obdélníkových průřezů v dřevěných konstrukcích) lze deplanační tuhost nastavit na nulu, a lze tak vynechat část rovnice v závorce.

Protože ve statice se setkáváme s podstatně více případy, než je ten výše popsaný, byly zavedeny korekční součinitele, kterými se například zohledňují odchylné průběhy momentů, podporové podmínky anebo působiště zatížení. Příslušnými součiniteli se přitom upraví délka nosníku a určí se účinná délka lef. Tato délka se mimo jiné v [2] stanoví následovně:

az je přitom vzdálenost působiště zatížení od středu smyku.

Pokud zatížení působí na dolní straně nosníku, pak je třeba uvažovat az se záporným znaménkem. Součinitele a1 a a2 lze převzít z obr. 03.

Rozlišujeme následující systémy:

  1. Prostý nosník s klouby na obou koncích a s uložením bránícím torznímu natočení
  2. Vetknutý nosník
  3. Konzola s vidlicovým uložením na volném konci
  4. Nosník vetknutý na obou stranách
  5. Prostý nosník s vetknutím na jedné straně
  6. Nosník o dvou polích
  7. Spojitý nosník s vidlicovým uložením - vnitřní pole
  8. Spojitý nosník s vidlicovým uložením - vnější pole

Normy navrhují provádět posouzení na klopení metodou náhradního prutu. Při výpočtu kritického momentu se uvažují hodnoty 5% kvantilu tuhosti. Pro dřevěnou konstrukci tak platí:

Kritické napětí v ohybu se tedy stanoví z výrazu:

Jestliže chceme zohlednit rotační pružinu na podpoře (plynoucí například z poddajnosti vidlicového uložení), pružné torzní uložení (například z trapézového plechu) nebo pružné uložení prutu (například vlivem ztužení), lze předchozí rovnici rozšířit následovně [2].


Přitom:


Pokud se uvažuje nekonečně tuhá rotační pružina KG na podpoře, je výsledek α = 1. Pružné torzní uložení KΘ se zpravidla v dřevěných konstrukcích nezohledňuje, protože nejsou k dispozici žádné studie. Parametr KΘ tak do rovnice vstupuje s hodnotou 0. Pružné uložení prutu Ky v důsledku ztužení nebo smykového pole má příznivý vliv na stabilitní chování nosníku. Je však třeba poznamenat, že pro uplatnění předchozí rovnice platí omezení. Přísně vzato tato rovnice platí pouze v případě, že dochází k podélnému zakřivení v jediném velkém sinusovém oblouku. Pokud je podloží prutu příliš tuhé, pak se již nejedná o tento případ, protože vlastní tvar vykazuje podél nosníku několik oblouků. V současnosti není nijak vymezeno, kdy rozšířená rovnice α a β pozbývá svou platnost.

Vhodné řešení vlastních čísel v takových případech ukážeme na různých příkladech v našem následujícím příspěvku.


Autor

Ing. Rehm se podílí na vývoji programů pro dřevěné konstrukce a zajišťuje technickou podporu zákazníkům.

Odkazy
Reference
  1. Timoshenko, S.; Gere, J. M.; Theory of Elastic Stability, 2. Auflage. New York: McGraw-Hill, 1961
  2. Nationaler Anhang - Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau; DIN EN 1995-1-1/NA:2013-08