Stability Analysis of a Purlin with an I-Section Without Lateral and Torsional Restraint

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

This technical article deals with the stability analysis of a roof purlin, which is connected without stiffeners by means of a bolt connection on the lower flange to have a minimum manufacturing effort.

Due to this structural design, a lateral and torsional restraint cannot be assumed here when determining the ideal elastic critical moment during the stability analysis. This reduces the structural resistance and, therefore, has to be considered. On the other hand, the ultimate load-increasing-capacity effect of the rotational restraint from the trapezoidal sheeting is taken into account.

The model of this technical article is based on Example 1.3 Roof Purlin in the technical literature [1]. The roof purlins are single-span beams between the roof trusses and have a length of 9.0 m and an inclination of 3.18°.

Loading and Internal Forces

The continuous trapezoidal sheeting lies on five roof purlins with an application width of approximately 4.50 m. According to the relevant tables in the technical literature for continuous beams, the factor for the support load B is 1.143. Take the characteristic values of the surface loads for self-weight, snow, and wind from [1]. The input or the calculation of the resulting member loads is performed using the parametrization available in RFEM and RSTAB.

The automatic combinatorics in RFEM/RSTAB are only performed for the ultimate limit state according to Equation 6.10 of EN 1990. The following design internal forces result from the generated load combinations.

Calculating the Ideal Elastic Critical Moment and Stability Analysis

To determine Mcr according to the eigenvalue method, we create an internal member model with four degrees of freedom in the RF-/STEEL EC3 add-on module. Since no lateral and torsional restraint can be assumed due to the formation without stiffeners outside the bracing panels, we have to calculate the rotational restraint resulting from the cross-section deformation of the purlin. This is done according to [5] as follows.

Formula 1

CD,B = 2 · E · ts34 · hs · GIT,G


where

Formula 2

GIT,G = G · b · t33 = 8,077 kN/cm2 · 26 cm · 1.25 cm33 = 11,568 kNcm2


Formula 3

hs = 25 cm - 1.25 cm = 23.75 cm


Formula 4

CD,B = 2 · 21,000 kN/cm2 · 0.75 cm34 · 23.75 cm · 11,568 kNcm2 = 6,569 kNcm/rad = 65.7 kNm/rad

A much more complex method can be found in [6].

Furthermore, we consider the ultimate load-increasing capacity of the trapezoidal sheeting (135/310-0.88 in the positive position). The effective rotational restraint CD is automatically calculated in RF-/STEEL EC3 according to [3], Equation E.11 if you enter the corresponding data in input tables 1.12 and 1.13.

Formula 5

CD = 11CD,A + 1CD,B + 1CD,C


where

Formula 6

CD,A = C100 · kba · kt · kbR · kA · kbT == 3.1 · 2.5 · 1.192 · 0.597 · 1.966 · 0.964 =10.45 kNm/m


Formula 7

CD,B = E4 · (1 - ν2) · 1h¯tw3  c1 · btf3 == 21,0004 · (1 - 0.32) · 1(25 - 1.25)0.753  0.5 · 261.253 = 91.64 kNm/m


Formula 8

CD,C =  k · E · Ieffs = 4 · 21,000 · 354450= 660.80 kNm/m


Formula 9

CD = 1110.45  191.64  1660.8 = 9.25 kNm/m

These values can be used to perform the stability analysis according to the analytical methods described in [2], Section 6.3. Due to the low roof inclination, the component in the direction of the minor axis can be neglected. Thus, it would be possible to perform the design according to Section 6.3.3 "Uniform members in bending and axial compression" or Section 6.3.4 "General method for lateral and lateral torsional buckling of structural components".

Due to the simpler input of the support conditions in this case, we select the method according to Section 6.3.4. If the moment around the minor axis can no longer be neglected, we would have to select the method according to Section 6.3.3.

The following figure shows the required entries of the nodal supports for the eigenvalue method (internal member model with four degrees of freedom).

The ultimate limit state of the roof purlin can be verified by the General Method. The critical load factor for CO 3 and the defined system is calculated as 2.535. You can also display the corresponding mode shape graphically.

The ideal elastic critical moment is thus calculated as follows:

Formula 10

Mcr = αcr,op · My = 2.535 · 125.5 kNm = 318 kNm

Calculating the Ideal Elastic Critical Moment on the Surface Model

A surface model is used to validate the ideal elastic critical moment Mcr. You can create this kind of model in RFEM with just a few mouse clicks, using the "Generate Surfaces from Member" function. With the RF-STABILITY add-on module, a critical load factor of 2.55 is calculated for the governing load combination 3 and thus results in:

Formula 11

Mcr = αcr · My = 2.55 · 125.5 kNm = 320 kNm

Author

Dipl.-Ing. (FH) Frank Sonntag, M.Sc.

Dipl.-Ing. (FH) Frank Sonntag, M.Sc.

Sales & Customer Support

Mr. Sonntag coordinates the Dlubal Software office in Leipzig and is responsible for sales and customer support.

Keywords

Lateral and torsional restraint Purlin Lateral-torsional buckling Stability Rotational restraint

Reference

[1]   bauforumstahl e.V.: Beispiele zur Bemessung von Stahltragwerken nach DIN EN 1993 - Eurocode 3. Berlin: Ernst & Sohn, 2011
[2]   Eurocode 3: Design of steel structures - Part 1‑1: General rules and rules for buildings; EN 1993‑1‑1:2010‑12
[3]   Eurocode 3: Design of steel structures - Part 1‑3: General rules - Supplementary rules for cold-formed members and sheeting; EN 1993‑1‑3:2010‑12
[4]   Lindner, J.; Scheer, J.; Schmidt, H.: Stahlbauten - Erläuterungen zu DIN 18800 Teil 1 bis Teil 4. Berlin: Ernst & Sohn, 1994
[5]   Stroetmann, R. (2000). Zur Stabilität von in Querrichtung gekoppelten Biegeträgern. Stahlbau 695, 391 - 408.
[6]   Geldmacher, G.; Lange, J.: Ein Konzept für den Traglastnachweis gurtgelagerter doppeltsymmetrischer I-Träger unter Berücksichtigung der Profilverformung, Stahlbau 79, Seiten 908 - 922. Berlin: Ernst & Sohn, 2010

Downloads

Links

Write Comment...

Write Comment...

  • Views 3360x
  • Updated 08/27/2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815

info-us@dlubal.com

Event Invitation

2022 NASCC: The Steel Conference

Conference 03/23/2022 - 03/25/2022

Event Invitation

International Mass Timber Conference

Conference 04/12/2022 - 04/14/2022

Event Invitation

Structures Congress 2022

Conference 04/21/2022 - 04/22/2022

Effective BIM Workflows Between RSTAB and RFEM and IDEA StatiCa

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Webinar 08/05/2021 11:00 AM - 12:00 PM CEST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EDT

Timber structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM BST

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM BST

FEA Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

ACI 318-19 Concrete Design in RFEM

ACI 318-19 Concrete Design in RFEM

Webinar 08/20/2020 2:00 PM - 3:00 PM EDT

RFEM 5
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RFEM 5
RF-STEEL EC3

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD
RFEM 5
RF-STEEL Warping Torsion

Module Extension for RF-STEEL EC3 and RF-STEEL AISC

Warping torsion analysis according to the second-order theory with 7 degrees of freedom

Price of First License
850.00 USD
RSTAB 8
RSTAB

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RSTAB 8
STEEL EC3

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD
RSTAB 8
STEEL Warping Torsion

Module Extension for STEEL EC3 and RF-STEEL AISC

Warping torsion analysis according to the second-order theory with 7 degrees of freedom

Price of First License
850.00 USD