Knowledge Base


Why Dlubal Software?


  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects


Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Structure

    Entering Lateral Supports and Their Effects in RF-/STEEL EC3

    When designing steel columns or steel beams, it is usually necessary to carry out cross-section and stability analyses. In most cases, cross-section design can be carried out without giving further details; the stability design, however, needs additional user-defined specifications. To a certain extent, the member is cut out from the structure and therefore, the support conditions have to be specified. This is particularly important to determine the ideal critical moment for lateral torsional buckling Mcr. In addition, the correct effective lengths Lcr have to be defined. They are necessary for the internal calculation of the slenderness ratios.
  2. Figure 01 - Structure

    Stability Analysis of Steel Column According to EN 1993-1-1

    This article is about the stability analysis of a steel column with axial compression according to EN 1993-1-1 Clause 6.3.1. Additionally, a variation study is carried out aiming at steel optimization.
  3. Determination of the Degrees of Restraint of the Column Ends Taking Into Acount the Stiffness of the Connecting Beam

    Determination of Effective Lengths in RF-/CONCRETE Columns

    With RF-/CONCRETE Columns, it is possible to determine effective lengths for columns automatically. This article describes which entries are necessary and how the calculation of the effective lengths is carried out.
  4. Figure 01 - Load Case 1

    Warping Torsion Analysis According to AISC Design Guide 9

    The design of a torsional loaded beam according to AISC Design Guide 9 will be shown based on a verification example. The design will be performed with the RF-STEEL AISC add-on module and the RF-STEEL Warping Torsion module extension with 7 degrees of freedom.
  5. Figure 01 - Cross-Section

    Stiffened Buckling Panels According to EN 1993-1-5, Section 4.5

    In SHAPE-THIN, it is possible to perform the calculation of stiffened buckling panels according to Section 4.5 of EN 1993-1-5. For stiffened buckling panels, the effective surfaces due to local buckling of the single panels in the plate and in the stiffeners as well as the effective surfaces from the entire panel buckling of the stiffened entire panel have to be considered.
  6. Figure 01 - System

    Lateral Torsional Buckling of a Principal Beam with I-Section According to EN 1993-1-1

    This example is described in technical literature [1] as example 9.5 and in [2] as example 8.5. A lateral-torsional buckling analysis must be performed for a principal beam. This beam is a uniform structural member. Therefore, the stability analysis can be carried out according to clause 6.3.3 of DIN EN 1993-1-1. Due to the uniaxial bending, it would also be possible to perform the design by the general method according to clause 6.3.4. Additionally, the determination of the moment Mcr is validated with an idealised member model in line with the method mentioned above, using a FEM model.

  7. Figure 01 - Model of Steel Shell Structure

    Plate Buckling Analysis of Steel Shell Structures Using MNA/LBA Concept

    Shell buckling is considered to be the most recent and least explored stability issue of structural engineering. This is less due to a lack of research activities, but rather due to the complexity of the theory. With the introduction and further development of the finite element method in structural engineering practice, some engineers no longer have to deal with the complicated theory of shell buckling. Evidence of the problems and errors to which this gives rise is very well summarized in [1].

  8. Figure 01 - Defining 'Limit Values for Stability Analysis'

    Limit Values for Stability Analysis in RF-/STEEL EC3

    As of the program version X.11, the filter options of small compression forces or moments for stability analysis in RF-/STEEL EC3 have been revised. The revision of these filter options in the 'Stability' tab of the 'Details' dialog box allows you to work in the module transparently since they are now independent of the design.

  9. Figure 01 - Example

    Imperfections According to EN 1993-1-1 Clause 5.3.2: Bow Imperfection

    According to EN 1993‑1‑1 [1], it is necessary to use the equivalent geometric imperfections with values that reflect the possible effects of all types of imperfections. EN 1993‑1‑1, Clause 5.3, specifies basic imperfections for the global analysis of frames as well as member imperfections.

  10. RF-/STEEL AISC Mode Shapes

    RF-/STEEL AISC Mode Shapes

    After running an analysis in RF-/STEEL AISC, the mode shapes for sets of members can be viewed graphically in a separate window. Select the relevant set of members in the result window and click the [Mode Shapes] button.

1 - 10 of 46

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”