Lunar Dome, USA

Structures Analyzed with Dlubal Software

  • Customer Project

Customer Project

The year 2019 marked the 50th anniversary of the first moon landing. For this occasion, a road show was planned in several cities throughout the United States of America. For this road show, a large temporary theater tent housing 1,600 seats was designed.

Producer
Matthew Churchill Production Ltd. and Nick Grace Management Ltd.
Architectural Design Teresa Hoskyns and Matthew Churchill
Membrane Structural Engineering and Workshop Drawings
formTL ingenieure für tragwerk und leichtbau GmbH
Radolfzell, Germany
www.form-tl.de
Membrane Contractor Canobbio Textile Engineering

Main Structure Model Parameters

Model

Dlubal customer formTL provided the structural engineering for this project. The finite element software RFEM was utilized for the analysis and design.

The tent was created as a temporary structure, optimized for quick assembly and easy transport A main membrane, supported by four truss arches, an elastically supported projection dome, and a large ETFE facade form the interior open space for this structure. The flexible foundation includes adaptable footing elements, anchored with long dowels. Pasadena, California was the first stop for the traveling theater for "Apollo 11 - the Immersive Live Show" in the summer of 2019.

Structure

The Apollo Theater’s main structure is formed by 4 arch trusses. Hanging from these elements is an approximate 52,743 ft² membrane made of PVC-coated polyester fabric type III. The two slightly inclined center trusses carry the primary load of the 240-foot-long tent structure. These main trusses have a span of 183 ft and a height of 89 ft. The 36-foot-high smaller lateral trusses in the foyer and backstage area are set at a higher inclination.

The interior includes a projection dome above a surrounding timber wall. This dome has a diameter of 151 ft and a height of 49 ft. It is suspended from the two main arches with elastic cables. This suspension stiffness is extremely low to allow the prestressing force to change only slightly if the outer shell is deformed (for example, due to strong wind). The projection dome membrane consists of lightweight PVC-coated polyester fabric with micro-perforations, which absorbs about 65% of the sound.

Located under the foyer arch are 32-foot-long facade supports with an ETFE cushion covering. The columns resist pressure loads only from the foyer arch. In the case of uplift loads, elongated holes provide decoupling.

The foundation for the arches includes large steel plates with 2.36 x 78.74 in. piles. The plates can be used to compensate for height differences up to 19.69 in. The piles were designed according to EN 13782 and verified in a pullout test.

Within one short year, the planning, production, and assembly of an unmatched temporary tent structure were completed.

Project Location

USA

Keywords

Membrane Steel Aluminum Truss Theater Temporary Mobile

Write Comment...

Write Comment...

  • Views 1820x
  • Updated 02/23/2022

Contact Us

Contact Dlubal

Do you have further questions or need advice? Contact us via phone, email, chat, or forum, or find suggested solutions and useful tips on our FAQ page, available 24/7.

(267) 702-2815

[email protected]

ADM 2020 Aluminum Design in \n RFEM 6

ADM 2020 Aluminum Design in RFEM 6

Webinar 05/25/2022 2:00 PM - 3:00 PM EST

Tensile Membrane Structure Design in RFEM 6

Tensile Membrane Structure Design in RFEM 6

Webinar 03/17/2022 2:00 PM - 3:00 PM EST

Analysis of Steel Joints Using FE Model in RFEM 6

Analysis of Steel Joints Using FE Model in RFEM 6

Webinar 02/24/2022 2:00 PM - 3:00 PM CET

Considering Construction Stages \n in RFEM 6

Considering Construction Stages in RFEM 6

Webinar 01/13/2022 2:00 PM - 3:00 PM CET

AISC 360-16 Steel Design in RFEM 6

AISC 360-16 Steel Design in RFEM 6

Webinar 12/14/2021 2:00 PM - 3:00 PM EST

Introduction to New RFEM 6

Introduction to the New RFEM 6

Webinar 11/11/2021 2:00 PM - 3:00 PM EST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EST

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM CET

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM CET