2018 NDS Updates for Cross-Laminated Timber Design

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

The American Wood Council (AWC) has released the 2018 Edition of the National Design Specification (NDS) for Wood Construction. This is the second edition of the NDS to contain a chapter dedicated to cross-laminated timber (CLT) design. Therefore, a couple of revisions were included in the 2018 NDS when compared to the previous 2015 Edition.

Revision 1: Format Conversion Factor, KF (LRFD only) - Section 10.3.10

The format conversion factor, KF, is specified in Table 10.3.1 [1]. This value is taken into consideration when calculating the rolling shear strength, Fs, per LRFD only. The factor simply adjusts the reference ASD design value to the LRFD reference resistance. Previously, this factor was set to 2.88 in the 2015 NDS. In the 2018 standard, the value was updated to 2.00. 

The RF-LAMINATE module has been updated to account for the new KF factor of 2.00 when designing per the ANSI/AWC NDS-2018 and LRFD.

Image 01 - Format Conversion Factor, KF, when Designing per 2018 NDS and LRFD in RF-LAMINATE

Revision 2: Apparent Bending Stiffness for Deflection Calculations - Section 10.4.1

The 2018 NDS states in Section 10.4.1 [1], the deflection of a CLT panel must include the effects of bending as well as shear deformation. The standard goes on to suggest reducing the effective bending stiffness, EIeff, to account for shear deformation as a function of the panel loading and support conditions, geometry, span, and effective shear stiffness. The stiffness adjusted for shear deformation is referred to as the apparent bending stiffness, (EI)app,and can be calculated per equation 10.4-1 [1]. This equation has been slightly modified from the 2015 standard. 

In RFEM and RF-LAMINATE, it is not possible to consider (EI)app since the Shear Deformation Adjustment Factor, Ks, must be determined for each panel from Table [1]. Ks depends on both the loading conditions(i. e. uniformly distributed, line load at mid-span, line load at quarter points, etc.) as well as the end fixity (i. e. fixed, pinned, cantilever, etc.). These variables don't necessarily fall into the defined categories defined in Table but rather may include several different loading conditions or end fixity. Therefore, RF-LAMINATE takes on a different and more exact approach to account for the effects of shear deformation. 

RF-LAMINATE applies the Laminate Theory to calculate the effective shear stiffness for a CLT panel. The overall stiffness matrix for each panel is comprised of multiple stiffness entries including bending and torsion, shear, membrane, and eccentricity with the D44 and D55 entries specifically related to shear stiffness.

Shear Stiffness Entries D44 and D55 in the CLT Panel Overall Stiffness Matrix:

Formula 1

D = D11D12D1300D16D17D18D22D2300sym.D27D28D3300sym.sym.D38D44D45000D55000sym.D66D67D68D77D78D88Bending and Torsion: D11 D12 D13 D22 D23 D33Shear: D44 D45 D55Membrane: D66 D67 D68 D77 D78 D88Eccentricity: D16 D17 D18 D27 D28 D38

General technical regulations [2] suggest in order to calculate the effective shear stiffness, the shear stiffness must be reduced by applying a shear correction coefficient, κ, in the panel's x and y directions. Effective Shear Stiffness = κGA
κ = shear correction coefficient
G = shear modulus
A = section area

For a typical homogeneous material, the shear stress distribution when viewing the cross-section of the element represents a parabolic shape. A κ value of 5/6 or 0.8 is typically used for this homogeneous material. However, when looking at the shear stress distribution of a CLT panel, the shape is no longer parabolic and the material is not considered homogeneous but rather isotropic. Therefore, the 0.8 factor cannot be used. There are several approximations for the shear correction coefficient for CLT panels depending on the number of cross-layers.

Image 02 - Estimates of Shear Stress Distribution and Shear Correction Factor

In RF-LAMINATE, the shear correction coefficient is indirectly considered when calculating the D44 and D55 stiffness matrix entries according to the Grashof integral formula [3].

Formula 2

D44,calc'' = 1-t/2t/21Gxz'' (z)zt/2Ex'' (z¯) (z¯ - z0,x)dz¯-t/2t/2Ex'' (z¯) (z¯ - z0,x)2dz¯dz, z0,x = -t/2t/2Ex'' (z¯) z¯dz¯-t/2t/2Ex'' (z¯) dz¯

Formula 3

D55,calc'' = 1-t/2t/21Gyz'' (z)zt/2Ey'' (z¯) (z¯ - z0,y)dz¯-t/2t/2Ey'' (z¯) (z¯ - z0,y)2dz¯dz, z0,y = -t/2t/2Ey'' (z¯) z¯dz¯-t/2t/2Ey'' (z¯) dz¯

The values of stiffnesses D44, D55 are given by the following equations where l is the mean length of the lines surrounding the surface as a "box".

Formula 4

D44'' = max D44,calc'', 485 l2 11i = 1n Ex,i''ti312 - 1i = 1n Ex,i''zmax,i3 - zmin,i33

Formula 5

D55'' = max D55,calc'', 485 l2 11i = 1n Ey,i''ti312 - 1i = 1n Ey,i''zmax,i3 - zmin,i33

The D44 and D55 entries automatically calculated in RF-LAMINATE will now consider the required shear stiffness reductions. The same stiffness matrix will further be used in RFEM to calculate the panel deflections. Therefore, the requirements of the 2018 NDS considering both bending and shear deformation for deflection calculations per Section 10.4.1 are met by taking a more exact approach with the Laminate Theory opposed to approximating the effects of shear deformation by reducing the effective bending stiffness.


Amy Heilig, PE

Amy Heilig, PE

CEO - USA Office
Sales & Technical Support Engineer

Amy Heilig is the CEO of the USA office located in Philadelphia, PA. In addition, she provides sales and technical support and continues to aid in the development of Dlubal Software programs for the North American market.


2018 NDS CLT Cross-Laminated Timber Wood Design


[1]   National Design Specification (NDS) for Wood Construction 2018 Edition
[2]   Schickhofer, G.; Bogensperger, T.; Moosbrugger, T.: BSPhandbuch - Holz-Massivbauweise in Brettsperrholz - Nachweise auf Basis des neuen europäischen Normenkonzepts, 2. Auflage. Graz: Verlag der Technischen Universität Graz, 2010
[3]   Manual RF-LAMINATE. (2016). Tiefenbach: Dlubal Software.


Write Comment...

Write Comment...

  • Views 1322x
  • Updated 12/27/2021

Contact Us

Contact Dlubal

Do you have further questions or need advice? Contact us via phone, email, or chat or find suggested solutions and useful tips on our FAQ page available 24/7.

(267) 702-2815


Event Invitation

NCSEA Structural Engineering Summit

Conference 02/15/2022 - 02/16/2022

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 03/17/2022 8:30 AM - 12:30 PM CET

Event Invitation

2022 NASCC: The Steel Conference

Conference 03/23/2022 - 03/25/2022

Event Invitation

International Mass Timber Conference

Conference 04/12/2022 - 04/14/2022

Event Invitation

Structures Congress 2022

Conference 04/21/2022 - 04/22/2022

Considering Construction Stages \n in RFEM 6

Considering Construction Stages in RFEM 6

Webinar 01/13/2022 2:00 PM - 3:00 PM CET

Timber Structure Design in RFEM 6 and RSTAB 9

Model and Design Timber Structures in RFEM 6 and RSTAB 9

Webinar 11/11/2021 2:00 PM - 3:00 PM CET

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EST

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM CET

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM CET

FEA Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EST

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM CET

NBC 2015 Modal Response Spectrum Analysis in RFEM

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EST


Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD

Add-on Module

Deflection analysis and stress design of laminate and sandwich surfaces

Price of First License
1,120.00 USD