Railway Station Building, Karlovy Vary, Czech Republic

Structures Analyzed with Dlubal Software

  • Customer project

Customer Project

This article was translated by Google Translator

View original text

The station building is an organic shape steel structure consisting of three connected parts. The left and right building portions are formed by curved Vierendeel truss beams extruding from the main Vierendeel truss down to the reinforced concrete foundation. These main trusses are supported by a row of columns with additional vertical bracing.

Structural analysis Ing. Jan Marik, Ph.D.
Ing. Jan Seifert
Architectural Design PETR FRANTA architects & associ., Spol. sro

Model Parameters


The building’s central portion is supported by two rows of centrally spaced columns on the left and right to form an entryway that also serves as a glass atrium. The center roof is formed by two lateral Vierendeel trusses and a massive middle truss supported by the elevator shaft at the span center. The beams, which support the glass panels, are placed between the trusses. The beams and trusses further form a lattice structure.

The right and left parts of the building are also formed by Vierendeel trusses. At the structure base, the trusses frame into the concrete footing with a pinned connection. The roof interior is supported by the center lateral main trusses. These trusses are further supported by multiple columns with additional vertical bracing. At the building’s entrance, a pedestrian bridge is suspended from the steel roof members joining together the two outer portions of the structure.

The rear wall at the platform side connects all parts of the building forming the gable wall. This wall consists of columns and intermediate beams complete with an aluminum facade. There also exists interior wall bracing. The overhang extends the roof beyond the plane of this longitudinal wall.

The columns are pinned at the base and at the top are horizontally connected to a lattice truss formed by the gable beam upper chords and the first truss with diagonal members spanning between the chords. Around the building exterior, there are windows anchored directly to the horizontally spanning beams. The cladding includes load-bearing trapezoidal sheeting, an insulating layer, and standing seam sheets (Kalzip). In the areas with greatest curvature, additional short struts are inserted between the Vierendeel trusses to ensure sufficient surface curvature for the trapezoidal sheet cladding.

The Vierendeel trusses are comprised of round tube chords (steel S355) and vertical webs manufactured with sheet metal P12 (steel S235). The load-bearing trapezoidal sheeting, as well as spacer elements throughout the roof, the horizontally spanning beams used to anchor the windows, and other elements used to transfer the vertical load tangential component to the cladding surface prevent the upper chord from out-of-plane buckling. For the lower chord, both the upper chord’s elastic support through the vertical webs and the spacer elements connecting the beam’s lower chords contribute against out-of-plane buckling.

Project Location

Karlovy Vary, Czech Republic


Steel structure RFEM STEEL EC3

Write Comment...

Write Comment...

  • Views 906x
  • Updated 04/21/2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815


Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EDT

Online training | English

RFEM for Students | Part 3

Online Training 06/15/2021 2:00 PM - 4:30 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM BST

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

Programmable COM Interface for RFEM/RSTAB

Programmable COM Interface for RFEM/RSTAB

Webinar 05/12/2020 3:00 PM - 3:45 PM CEST

Nonlinear Time History Analysis in RFEM

Nonlinear Time History Analysis in RFEM

Webinar 05/08/2018 3:00 PM - 4:00 PM EDT

RFEM Steel and Aluminum Structures

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD