# FAQ 003414 EN-US

### What is the meaning of the superposition according to the CQC rule in a dynamic analysis??

The complete quadratic combination (CQC rule) must be applied if there are the adjacent modal shapes, whose periods differ about less than 10%, when analyzing the spatial models with the combined torsional / translational mode shapes. If this is not the case, the square root of the sum of the squares (SRSS rule) applies. In all other cases, the CQC rule must be applied. The CQC rule is defined as follows:

${\mathrm E}_{\mathrm{CQC}}=\sqrt{\sum_{\mathrm i=1}^{\mathrm p}\sum_{\mathrm j=1}^{\mathrm p}{\mathrm E}_{\mathrm i}{\mathrm\varepsilon}_{\mathrm{ij}}{\mathrm E}_{\mathrm j}}$

with the correlation coefficient:

${\mathrm\varepsilon}_{\mathrm{ij}}=\frac{8\sqrt{{\mathrm D}_{\mathrm i}{\mathrm D}_{\mathrm j}}({\mathrm D}_{\mathrm i}+{\mathrm D}_{\mathrm j})\mathrm r^{\displaystyle\frac32}}{\left(1-\mathrm r^2\right)^2+4{\mathrm D}_{\mathrm i}{\mathrm D}_{\mathrm j}\mathrm r(1+\mathrm r^2)+4(\mathrm D_{\mathrm i}^2+\mathrm D_{\mathrm j}^2)\mathrm r^2}$

where:

$\mathrm r=\frac{{\mathrm\omega}_{\mathrm j}}{{\mathrm\omega}_{\mathrm i}}$

The correlation coefficient is simplified if the viscous damping value D is selected to be the same for all mode shapes:

${\mathrm\varepsilon}_{\mathrm{ij}}=\frac{8\mathrm D^2(1+\mathrm r)\mathrm r^{\displaystyle\frac32}}{\left(1-\mathrm r^2\right)^2+4\mathrm D^2\mathrm r(1+\mathrm r^2)}$

By analogy to the SRSS rule, the CQC rule can also be performed as an equivalent linear combination. The formula of the modified CQC rule is as follows:

${\mathrm E}_{\mathrm{CQC}}=\sum_{\mathrm i=1}^{\mathrm p}{\mathrm f}_{\mathrm i}{\mathrm E}_{\mathrm i}$

where:

${\mathrm f}_{\mathrm i}=\frac{{\displaystyle\sum_{\mathrm i=1}^{\mathrm p}}{\mathrm\varepsilon}_{\mathrm{ij}}{\mathrm E}_{\mathrm j}}{\sqrt{{\displaystyle\sum_{\mathrm i=1}^{\mathrm p}}{\displaystyle\sum_{\mathrm j=1}^{\mathrm p}}{\mathrm E}_{\mathrm i}{\mathrm\varepsilon}_{\mathrm{ij}}{\mathrm E}_{\mathrm j}}}$

#### Reference

 [1] Meskouris, K. (1999). Baudynamik, Modelle, Methoden, Praxisbeispiele. Berlin: Ernst & Sohn.

Write Comment...

Write Comment...

• Views 804x

If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

2022 NASCC: The Steel Conference

Conference 03/23/2022 - 03/25/2022

International Mass Timber Conference

Conference 04/12/2022 - 04/14/2022

Structures Congress 2022

Conference 04/21/2022 - 04/22/2022

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Webinar 08/05/2021 11:00 AM - 12:00 PM CEST

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EDT

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

Webinar 03/10/2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM BST

Webinar 01/19/2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM BST

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

Webinar 08/20/2020 2:00 PM - 3:00 PM EDT

How to Be More Productive Using RFEM

Webinar 07/07/2020 3:00 PM - 4:00 PM CEST

Length 3:02:59 min

Length 1:09 min

Length 1:14 min

Length 0:51 min

Length 2:50:30 min

Length 1:03 min

Length 1:01 min

Length 1:34:45 min

Length 0:18 min

Length 6:32 min

Length 0:39 min

Length 1:02 min

Length 0:37 min

Length 0:40 min

Length 1:01 min