Time-Dependent Analysis Add-on in RFEM 6 and RSTAB 9

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

This article shows how the “Time-Dependent Analysis” add-on is integrated in RFEM 6 and RSTAB 9. It describes how to define input data such as the time-dependent characteristics of the material, how to determine the type of analysis and how to specify loading times.

Although many believe that the engineer’s job is done with the construction of the building, this is not entirely true. The structural engineer should always consider that time has an impact on the construction project even when it is completed. Therefore, the long-term behavior of the materials must be taken into account in the analysis. This is important because long-term effects such as creep, shrinkage, and aging can affect the distribution of internal forces. Such influence can be taken into account by carrying out a time-dependent analysis (TDA).

In both RFEM 6 and RSTAB 9 it is possible to consider the time-dependent factors using the "Time-Dependent Analysis (TDA)" add-on. Once purchased, you can activate this add-on in the Base Data as shown in Image 1.

After activating the add-on, the following dialog boxes are extended with options relevant for the time-dependent analysis: “Materials” in the “Basic Objects” category, and “Load Cases” and “Load Combinations” in the “Load Cases and Combinations”. The former is expanded to include specific properties and define the time-dependent characteristics of the material. Please note that this currently only applies to concrete, but the add-on is under development and will include other suitable materials in the future. For the last two (“Load Cases” and “Load Combinations”), the analysis types are expended to include the “Time-dependent analysis (TDA)” analysis type.

Both are detailed in the next sub-chapters of this article.

Load Cases and Combinations

You can perform time-dependent verifications for load cases that have been assigned to the “Time-Dependent Analysis” analysis type. In the “Load Cases” and “Load Combinations” tabs of the “Load Cases and Combinations” dialog box, you can assign this analysis type and define the time-related parameters.

If the “Time-Dependent Analysis (TDA)” add-on is activated in the Base Data, “Static Analysis | Time-dependent analysis (TDA)” appears in the list of analysis types to choose from. You can therefore associate this type of analysis with load cases and combinations for which you want to perform the time-dependent study. As shown in Image 2, you can add time information to these load cases such as the start and end of the load. After you have defined the time data, the influence of creep at the end of the load is taken into account. The program enables the modeling of creep effects, as explained in the following subchapter. The calculation is carried-out nonlinearly according to the rheological model (Generalized Kelvin model).

Time-Dependent Material Properties

In addition to the list of analysis types in the “Load Cases and Combinations”, activation of the TDA add-on also expends the options in the “Material” dialog box so that specific properties can be taken into account. For suitable materials (currently only concrete), the additional tab shown in Image 3 is available to you to define the material properties relevant for the time-dependent analysis.

Thus, in the “Time-Dependent Properties of Concrete” tab you can specify which time-dependent effects are to be applied. Both “Creep” and “Shrinkage” are available for selection. For example, if you tick the “Creep” check box to account for the time-dependent deformation of the material, you can then define the parameters that the program uses to determine the creep coefficient φ, and you can define the modification of concrete maturation. In addition, you can define parameters used for the visualization of the “Creep Coefficient - Time Diagram” such as the number of steps and the age of the concrete at the time under consideration.


After the calculation, you can display the end-time deformations for each load case as shown in Image 4. These results are also documented for you in the printout report of RFEM 6 and RSTAB 9. You can select the report contents and extent specifically for the individual design checks.


Irena Kirova, M.Sc.

Irena Kirova, M.Sc.

Marketing & Customer Support

Ms. Kirova is responsible for creating technical articles and provides technical support to the Dlubal customers.


TDA Time-dependent analysis Creep Shrinkage Results


Write Comment...

Write Comment...

  • Views 248x
  • Updated 7 February 2023

Contact Us

Contact Dlubal

Do you have any further questions or need advice? Contact us via phone, email, chat or forum or search the FAQ page, available 24/7.

+49 (0) 9673 9203-0

[email protected]

Steel Silo Design in RFEM 6

Steel Silo Design in RFEM 6 (USA)

Webinar 21 March 2023 2:00 PM - 3:00 PM EDT

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 30 March 2023 9:00 AM - 1:00 PM CEST

Modeling of Sections in RSECTION 1

Modeling Sections in RSECTION 1

Webinar 30 March 2023 2:00 PM - 3:00 PM CEST

Online Training | English

RFEM 6 | Basics

Online Training 20 April 2023 8:30 AM - 12:30 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to Member Design

Online Training 20 April 2023 4:00 PM - 7:00 PM CEST

BAU 2023 | Munich, Germany

BAU 2023

Trade Fair 17 April 2023 - 22 April 2023

Online Training | English

RSECTION | Students | Introduction to Strength of Materials

Online Training 26 April 2023 4:00 PM - 5:30 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to FEM

Online Training 4 May 2023 4:00 PM - 7:00 PM CEST

Online Training | English

Eurocode 2 | Concrete Structures According to DIN EN 1992-1-1

Online Training 11 May 2023 8:30 AM - 12:30 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 16 May 2023 8:30 AM - 12:30 PM CEST

Hall with Arched Roof

Main Program

The structural analysis program RFEM 6 is the basis of a modular software system. The main program RFEM 6 is used to define structures, materials, and loads of planar and spatial structural systems consisting of plates, walls, shells, and members. The program can also design combined structures as well as solid and contact elements.

Price of First License
4,450.00 EUR
Structural Frame and Truss Analysis Software

Main Program

The structural frame & truss analysis and design program RSTAB 9 contains a similar range of functions as the FEA software RFEM, paying special attention to frames and trusses. Therefore, it is very easy to use and for many years, it has been the best choice for the structural analysis of beam structures consisting of steel, concrete, timber, aluminum, and other materials.

Price of First License
2,850.00 EUR