Shuter Street Bridge in Toronto, Canada

Structures Analysed with Dlubal Software

  • Customer project

Customer Project

Since March 2011, a glass pedestrian bridge with a length of 98.4 ft has connected St. Michael's Hospital with the Li Ka Shing Knowledge Institute research center. The supporting structure consists of several oval steel rings which are twisted together. The bridge, with a section height of 15 ft and a width of 12.4 ft, was designed by Diamond and Schmitt Architects Inc. from Toronto.

Structural Engineering Gartner Steel and Glass GmbH, Würzburg, Germany
josef-gartner.permasteelisagroup.com

Josef Gartner USA
Chicago, IL, USA
Architect Diamond and Schmitt Architects Inc.
Toronto, Canada
Test Carruthers & Wallace Ltd.
Toronto, Canada
Investor St. Michael's Hospital
Toronto, Canada

Model

As people in Toronto mainly use the PATH system (an underground system of pedestrian paths, extending over a length of 17.3 miles), the town could be persuaded to grant the permit only on the grounds of architectural originality. The lightness of the bridge was achieved by curved and thermally prestressed panes of insulated glass as well as curved pipes crossing each other, together forming the supporting structure; thus, the construction appears different depending on the perspective.

Structure

The bridge was designed as a statically determinate framework because of different building movements and the regulation that introducing major forces into the building structure is not allowed. The fixed point, and thus the transfer of horizontal forces, was put to the side of the old building. The cross‑section of the bridge is elliptical. The supporting tube is formed by a large number of circular, parallel lying pipes intersecting circular pipes which are lying parallel to one another in the opposite direction.

Design

The engineers were able to design the bridge according to DIN 18800, as agreed with the local test engineer. Loading, however, was determined and taken into account in accordance with local standards.

The bridge was calculated non-linearly as a 3D model in RSTAB. As the complete construction was welded, an equivalent model was used to determine the effective stiffnesses of nodes for analyzing the deformations.

Then, the nodal stiffnesses were built as releases into the RSTAB model. Furthermore, the deformation and stress design ratio of the total structure were determined. Finally, the most critical welding nodes were designed in RFEM using the calculated internal forces.

Write Comment...

Write Comment...

  • Views 602x
  • Updated 21 June 2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

Online Training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 29 July 2021 8:30 AM - 12:30 PM CEST

Online Training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 11 August 2021 8:30 AM - 12:30 PM CEST

Online-Schulungen | English

RFEM for Students | USA

Online Training 11 August 2021 1:00 PM - 4:00 PM EDT

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 25 August 2021 8:30 AM - 12:30 PM CEST

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 23 September 2021 8:30 AM - 12:30 PM CEST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 8 June 2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EDT

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 11 May 2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM CEST

CSA S16: 19 Steel design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM BST

Member design according to ADM 2020 in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM BST

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM BST

FEM - Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11 November 2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 27 October 2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 30 September 2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Documenting Results in the RFEM Printout Report

Webinar 25 August 2020 2:00 PM - 2:45 PM CEST

ACI 318-19 Concrete Design in RFEM

Webinar 20 August 2020 2:00 PM - 3:00 PM EDT

How to Be More Productive Using RFEM

How to Be More Productive Using RFEM

Webinar 7 July 2020 3:00 PM - 4:00 PM CEST

Introduction to Solid Modeling \n in RFEM

Introduction to Solid Modeling in RFEM

Webinar 30 June 2020 2:00 PM - 3:00 PM EDT

Modeling with Solids in RFEM

Modeling with Solids in RFEM

Webinar 9 June 2020 3:00 PM - 3:45 PM CEST

CSA A23.3 Concrete Design in RFEM

CSA A23.3:19 Concrete Design in RFEM

Webinar 14 May 2020 2:00 PM - 3:00 PM EDT

}
RSTAB
Structural Frame Analysis Software RSTAB

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RFEM
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD