Stiffening of Structures

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

Buildings must be designed and dimensioned in such a way that both vertical and horizontal loads are conducted safely and without large deformations in the building. Examples of horizontal loads are wind, unintentional inclination, earthquakes, or a blast.

Finite element analysis programs such as RFEM allow you to determine internal forces and design stiffening structural elements. In this program, you can model a building including all structural components, openings, and other elements, and perform a calculation of the entire model.

Predimensioning of stiffening system can be performed using manual calculation according to the calculation method described in [1] or by using a program such as SHAPE‑THIN. This software provides engineers with a better understanding of the load transfer in a structure as well as the resistance contribution of the individual structural components.

Distribution of Horizontal Forces

The horizontal load distribution for bending or torsional loading on the stiffening components can be calculated according to the following formulas.

Forces Caused by Bending

Formula 1

Vy,i = Vy · (Iz,i · Iy - Iyz,i · Iyz) - Vz · (Iz,i · Iyz - Iyz,i · Iz)Iy · Iz - Iyz²Vz,i = Vy · (Iyz,i · Iy - Iy,i · Iyz) - Vz · (Iyz,i · Iyz - Iy,i · Iz)Iy · Iz - Iyz²


where
Vy,i, Vz,i: shear force in the y- or z‑direction, which affects the partial cross‑section i
Vy, Vz: shear force in the y- or z‑direction, which affects the gross cross‑section
Iy,i, Iz,i, Iyz,i: moments of inertia of the partial cross‑section i relating to the parallel axes Y and Z by the partial cross‑section centroid Si
Iy, Iz: total second moments of area relating to the overall centroid S

Forces Caused by Torsion

Formula 2

Vy,i = Mxs · [Iyz,i · (yM,i - yM) - Iz,i · (zM,i - zM)]Σ [Iω,i + Iy,i · (yM,i - yM)² - 2 · Iyz,i · (yM,i - yM) · (zM,i - zM) + Iz,i · (zM,i - zM)²]Vz,i = Mxs · [Iy,i · (yM,i - yM) - Iyz,i · (zM,i - zM)]Σ [Iω,i + Iy,i · (yM,i - yM)² - 2 · Iyz,i · (yM,i - yM) · (zM,i - zM) + Iz,i · (zM,i - zM)²]


where
Vy,i, Vz,i: shear force in the y- or z‑direction, which affects the partial cross‑section
Mxs: secondary torsional moment, which affects the gross cross‑section
Iy,i, Iz,i, Iyz,i:  moments of inertia of the partial cross‑section i relating to the parallel axes Y and Z by the partial cross‑section centroid Si
Iω,i: warping constant relating to the shear center of the partial cross‑section Mi
yM,i, zM,i: coordinate of the shear center of the partial cross‑section Mi
yM, zM: coordinate of the overall shear center M

Example

The distribution of horizontal loads on the stiffening elements is explained on the structural system shown in Figure 01.

Image 01 - System

Wall thickness t = 30 cm

Cross-Section Properties

Partial cross-section 1

Formula 3

zS,1 = 2,15 · 0,30 · 0,302 + 4,70 · 0,30 · (4,702 + 0,30) + 2,15 · 0,30 · (0,30 + 4,70 + 0,302)2,15 · 0,30 · 2 + 4,70 · 0,30 = 2,65 myS,1 = 2,15 · 0,30 · 2,152 · 2 + 4,70 · 0,30 · 0,3022,15 · 0,30 · 2 + 4,70 · 0,30 = 0,59 mIy,1 = 2,15 · 0,30312 · 2 + 2,15 · 0,30 · (2,65 - 0,302)² · 2 + 0,30 · 4,70312 + 4,70 · 0,30 · (0,00)² = 10,668 m4Iz,1 = 0,30 · 2,15312 · 2 + 2,15 · 0,30 · (2,152 - 0,59)² · 2 + 4,70 · 0,30312 + 4,70 · 0,30 · (0,59 - 0,302)² = 1,084 m4

Partial cross-section 2

Formula 4

Iy,2 = 0.30 · 4.00312 = 1.600 m4Iz,2 = 4.00 · 0.30312 = 0.009 m4

Gross cross-section
Iy = 10.668 + 1.600 = 12.268 m4
Iz = 1.084 + 0.009 = 1.093 m4

The cross-section properties determined in SHAPE‑THIN 8 are displayed in Figure 02.

Image 02 - Cross -section properties

Shear Forces of Partial Cross-Section

Formula 5

Vy,1 = 100 · (1.084 · 12.268)12.268 · 1.093 = 99.18 kNVy,2 = 100 · (0.009 · 12.268)12.268 · 1.093 = 0.823 kN

The shear forces of the partial cross‑section determined in SHAPE‑THIN 8 are displayed in Figure 03.

Image 03 - Partial cross -section shear forces

Reference

[1] Beck, H.; Schäfer, H.: Die Berechnung von Hochhäusern durch Zusammenfassung aller aussteifenden Bauteile zu einem Balken. Der Bauingenieur, Heft 3, 1969

Author

Sonja von Bloh, M.Sc.

Sonja von Bloh, M.Sc.

Product Engineering & Customer Support

Ms. von Bloh provides technical support for our customer and is responsible for the development of the SHAPE‑THIN program.

Keywords

Stiffening Stiffening system Horizontal load distribution Shear wall shear force

Downloads

Links

Write Comment...

Write Comment...

  • Views 1518x
  • Updated 06/21/2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815

info-us@dlubal.com

Online training | English

RFEM | Basics

Online Training 07/13/2021 9:00 AM - 1:00 PM CEST

Online training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 07/29/2021 8:30 AM - 12:30 PM CEST

Online training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 08/11/2021 8:30 AM - 12:30 PM CEST

Online Training | English

RFEM for Students | USA

Online Training 08/11/2021 1:00 PM - 4:00 PM EDT

Online training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 08/25/2021 8:30 AM - 12:30 PM CEST

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 09/23/2021 8:30 AM - 12:30 PM CEST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EDT

Timber structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM BST

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM BST

FEA Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

ACI 318-19 Concrete Design in RFEM

ACI 318-19 Concrete Design in RFEM

Webinar 08/20/2020 2:00 PM - 3:00 PM EDT

How to Be More Productive Using RFEM

How to Be More Productive Using RFEM

Webinar 07/07/2020 3:00 PM - 4:00 PM CEST

Introduction to Solid Modeling \n in RFEM

Introduction to Solid Modeling in RFEM

Webinar 06/30/2020 2:00 PM - 3:00 PM EDT

Modeling with Solids in RFEM

Modeling with Solids in RFEM

Webinar 06/09/2020 3:00 PM - 3:45 PM CEST

}
RFEM
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD