Consideration of Shear Stiffness for a Cross-Section Calculation in RFEM 6

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

Considering shear stiffness leads to an increase of deformations due to shear forces. Although the shear deformation is almost irrelevant for rolled and welded cross-sections, we strongly recommend considering it for the deformation analysis of solid and timber cross-sections.

In RFEM 6, the shear stiffnesses of members are automatically considered by the program. However, this consideration leads to different results than those you might obtain with a manual calculation. To show this, as well as to illustrate how to deactivate the shear stiffness for a cross-section calculation, a practical example will be provided. The model of interest is a timber beam with two spans of 4 m each, loaded with 1.5 kN/m, as shown in Image 1.

First, we can perform the manual calculation of internal forces and displacements for the continuous beam of interest. For this purpose, the available data can be entered into well-known beam design and deflection equations for a continuous beam with two equal spans and a uniformly distributed load. The distribution of internal forces is shown in Image 2, and the results obtained are as follows:

Shear Force V1 and V4

3qL8=3*1.5*48=2.25 kN

Shear Force V2 and V3

5qL8=5*1.5*48=3.75 kN

Bending Moment M1

9qL2128=9*1.5*42128=1.6875 kNm

Bending Moment M2

qL28=1.5*428=3 kNm

Maximum Deflection Δmax

Δmax=qL4185EI=1,5*44185*2911.76=0.0007m

Next, you can perform the same calculation in RFEM 6 and look at the results obtained as shown in Image 3. As already mentioned, the difference with respect to the results of the manual calculation is due to the automatic consideration of the shear stiffness and the increased deformation.

However, if you are interested in obtaining results for which the shear stiffness is not considered, this is also possible in RFEM 6 since you have the possibility to control the consideration of shear stiffnesses separately for each cross-section. To do so, you should open the associated "Edit Cross-Section" dialog box, as shown in Image 4. The influence of the shear depends on the cross-section areas Ay and Az (Image 4). These cross-section properties can be displayed in tables or cross-section entries and adjusted, if necessary. In addition, the shear stiffness can be deactivated (Image 5) and thus, not considered in the cross-section calculation. In this case, the results obtained in RFEM 6 (Image 6) will be identical to those calculated manually.

Author

Irena Kirova, M.Sc.

Irena Kirova, M.Sc.

Marketing & Customer Support

Ms. Kirova is responsible for creating technical articles and provides technical support to the Dlubal customers.

Keywords

Shear stiffness Members Cross-section calculation

Links

Write Comment...

Write Comment...

  • Views 546x
  • Updated 09/26/2022

Contact Us

Contact Dlubal

Do you have further questions or need advice? Contact us via phone, email, chat, or forum, or search the FAQ page, available 24/7.

(267) 702-2815

[email protected]

Online Training | English

RFEM 6 | Basics

Online Training 10/07/2022 9:00 AM - 1:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to Member Design

Online Training 10/12/2022 4:00 PM - 7:00 PM CEST

Online Training | English

Eurocode 2 | Concrete Structures According to DIN EN 1992-1-1

Online Training 10/18/2022 9:00 AM - 1:00 PM CEST

Online Training | English

RSECTION | Students | Introduction to Strength of Materials

Online Training 10/19/2022 4:00 PM - 5:30 PM CEST

Tool-Based Structural Design Optimization in RFEM 6

Tool-Based Structural Design Optimization in RFEM 6

Webinar 10/20/2022 2:00 PM - 3:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to FEM

Online Training 10/27/2022 4:00 PM - 7:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to Steel Design

Online Training 11/10/2022 4:00 PM - 5:00 PM CET

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 11/17/2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 11/23/2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Timber Design

Online Training 11/25/2022 4:00 PM - 5:00 PM CET

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 12/08/2022 9:00 AM - 1:00 PM CET

Event Invitation

International Mass Timber Conference

Conference 03/27/2023 - 03/29/2023

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 09/21/2022 9:00 AM - 1:00 PM CEST

Rhino/Grasshopper Integration in RFEM 6

Rhino/Grasshopper Integration in RFEM 6

Webinar 09/20/2022 2:00 PM - 3:00 PM EDT

Design Aluminum Structures \n in RFEM 6 and RSTAB 9

Model and Design Aluminum Structures in RFEM 6 and RSTAB 9

Webinar 09/15/2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 09/15/2022 9:00 AM - 1:00 PM CEST

RFEM 6
Hall with Arched Roof

Main Program

The structural analysis program RFEM 6 is the basis of a modular software system. The main program RFEM 6 is used to define structures, materials, and loads of planar and spatial structural systems consisting of plates, walls, shells, and members. The program can also design combined structures as well as solid and contact elements.

Price of First License
4,450.00 EUR