I design timber components. The deformations of load combinations deviate from the manual calculation exactly by the factor of the material partial safety factor. Why?

Answer

In the calculation parameters of the load combinations, the calculation type according to the second-order analysis is preset by default. For example, the calculation is performed according to EN 1995‑1‑1, 2.2.2(1)P, using the design values of the stiffness property of the structural component, that is, the stiffnesses divided by the partial safety factor. For this reason, this stiffness modification is activated by default (see Image 01). For the load combinations in the serviceability limit state, there should be no reduction of the stiffness, of course.

Manual Creation of Load Combinations

If you create the load combinations manually, the load combination cannot "know" which limit state is involved. In this case, it is necessary to make the setting manually (see Image 02). This setting must also be deactivated manually when switching to the geometrically linear analysis.

Automatic Generation of Load Combinations

If the load combinations are generated automatically by the program (see Image 03), the stiffness reduction is automatically deactivated for the SLS combinations specific to timber structures. For the ULS combinations, the reduction depending on the method of analysis is considered (second-order analysis and higher) or not (geometrically linear analysis). However, this requires the definition of the calculation type in the combination expressions (see Image 04). Changing the calculation type in the calculation parameters of the CO has no impact on the stiffness.

Keywords

Partial safety factor Deformations

Write Comment...

Write Comment...

  • Views 68x
  • Updated 18 January 2021

Contact us

Did you find your question?
If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

+49 9673 9203 0

info@dlubal.com

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EST

Online-Schulungen | English

RFEM | Basics | USA

Online Training 20 January 2021 12:00 PM - 4:00 PM EST

Online Training | English

RFEM | Basics

Online Training 29 January 2021 8:30 AM - 12:30 PM CET

Online Training | English

RFEM for Students | USA

Online Training 3 February 2021 1:00 PM - 4:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM CET

Online Training | English

RFEM | Steel | USA

Online Training 16 February 2021 9:00 AM - 12:00 PM EST

Online Training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 19 February 2021 8:30 AM - 12:30 PM CET

Online Training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 24 February 2021 8:30 AM - 12:30 PM CET

Online Training | English

Eurocode 5 | Timber structures according to EN 1995-1-1

Online Training 17 March 2021 8:30 AM - 12:30 PM CET

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 18 March 2021 8:30 AM - 12:30 PM CET

Online Training | English

RFEM | Dynamics | USA

Online Training 23 March 2021 1:00 PM - 4:00 PM EST

Online Training | English

RFEM | Basics

Online Training 23 April 2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 6 May 2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 11 May 2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 20 May 2021 8:30 AM - 12:30 PM

Online Training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 2 June 2021 8:30 AM - 12:30 PM

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD