Registrieren Sie sich für das Dlubal-Extranet, um die Software optimal nutzen zu lassen und ausschließlichen Zugriff auf Ihre persönlichen Daten zu haben.
In diesem Beitrag werden die verschiedenen Methoden erläutert, die im Add-On Modalanalyse zur Ermittlung der Anzahl an Eigenformen zur Verfügung stehen.
Die Beurteilung der Geschossverschiebung in einem Gebäude ist entscheidend, um eine akzeptable Tragleistung durch Begrenzung der Verschiebungsmenge sicherzustellen. Eine übermäßige Verschiebung kann zu einer Systeminstabilität führen und kann zu Schäden an nichttragenden Bauteilen wie Trennwänden führen. In diesem Beitrag wird das Verfahren zur Ermittlung der Stockwerksverschiebung gemäß ASCE 7-22 und dem Add-On Gebäudemodell in RFEM 6 erläutert.
Die Norm ASCE 7-22 [1], Abschn. 12.9.1.6 legt fest, wann P-Delta-Effekte berücksichtigt werden sollten, wenn ein multimodales Antwortspektrenverfahren für die Erdbebenbemessung durchgeführt wird. NBC 2020 [2], Satz 4.1.8.3.8.c enthält nur eine kurze Anforderung, dass Schwingungseffekte aufgrund der Wechselwirkung von Gewichtskräften mit der verformten Struktur berücksichtigt werden sollten. Daher kann es Situationen geben, in denen Auswirkungen nach Theorie II. Ordnung, auch P-Delta genannt, bei der Erdbebenanalyse berücksichtigt werden müssen.
Dieser Artikel führt grundlegende Konzepte der Baudynamik ein und vermittelt, wie diese bei der Erdbebenauslegung von Bauwerken eine Rolle spielen. Es wird Wert darauf gelegt, die technischen Aspekte verständlich zu erläutern, um auch Lesern ohne tiefergehendes Fachwissen einen Einblick in die Thematik zu gewähren.
Im Add-On Stahlbemessung von RFEM 6 stehen drei Arten von biegesteifen Rahmen (OMF, IMF, SMF) zur Verfügung. Das Ergebnis der Erdbebenbemessung ist nach AISC 341-22 in zwei Abschnitte gegliedert: Stabanforderungen und Anschlussanforderungen.
Der National Building Code of Canada (NBC) 2020 Artikel 4.1.8.7 sieht ein klares Verfahren für Analysemethoden bei Erdbeben vor. Die fortgeschrittenere Methode, nämlich das Verfahren der dynamischen Analyse in Artikel 4.1.8.12, sollte für alle Tragwerkstypen verwendet werden, mit Ausnahme derjenigen, die die Kriterien in 4.1.8.7 erfüllen. Die einfachere Methode, das Ersatzkraftverfahren (Equivalent Static Force Procedure (ESFP)) in Artikel 4.1.8.11, kann für alle anderen Tragwerke verwendet werden.
Für die Beurteilung, ob bei einer dynamischen Berechnung auch die Theorie II. Ordnung berücksichtigt werden muss, stellt die EN 1998-1 Abschnitt 2.2.2 und 4.4.2.2 den Empfindlichkeitsbeiwert der gegenseitigen Stockwerksverschiebung θ zur Verfügung. Dieser kann mit RFEM 6 und RSTAB 9 berechnet und untersucht werden.
Die EN 1998-1 Abschnitt 2.2.2 und 4.4.2.2 fordert für den Nachweis im Grenzzustand der Tragfähigkeit die Berechnung unter Berücksichtigung der Theorie II. Ordnung (P-Δ-Effekt). Dieser Einfluss darf nur vernachlässigt werden, wenn der Empfindlichkeitsbeiwert der gegenseitigen Stockwerksverschiebung θ kleiner 0,1 ist.
Das Add-On Stahlbemessung bietet in RFEM 6 jetzt die Möglichkeit, Erdbebennachweise nach AISC 341-16 und AISC 341-22 zu führen. Fünf SFRS-Typen (Seismic Force-Resisting Systeme) stehen derzeit zur Verfügung.
Im Add-On Stahlbemessung von RFEM 6 stehen drei Arten von Momentrahmen (OMF, IMF, SMF) zur Verfügung. Das Ergebnis der Erdbebenbemessung ist nach AISC 341-16 in zwei Abschnitte gegliedert: Stabanforderungen und Anschlussanforderungen.
Auch die Bemessung von Momentrahmen nach AISC 341-16 ist nun im Add-On Stahlbemessung von RFEM 6 möglich. Das Ergebnis der Erdbebenbemessung ist in zwei Abschnitte gegliedert: Stabanforderungen und Anschlussanforderungen. In diesem Beitrag wird die erforderliche Festigkeit der Verbindung erläutert. Es wird ein Beispiel für einen Vergleich der Ergebnisse zwischen RFEM und dem Handbuch für den seismischen Nachweis nach AISC vorgestellt.
Die Bemessung eines OCBF (ordinary concentrically braced frame - gewöhnlicher konzentrisch ausgesteifter Rahmen) und eines SCBF (special concentrically braced frame - spezieller konzentrisch ausgesteifter Rahmen) kann im Add-On Stahlbemessung von RFEM 6 durchgeführt werden. Das Ergebnis der Erdbebenbemessung ist nach AISC 341-16 und 341-22 in zwei Abschnitte gegliedert: Stabanforderungen und Anschlussanforderungen.
Sowohl die Ermittlung von Eigenschwingungen als auch das Antwortspektrenverfahren werden stets an einem linearen System durchgeführt. Sind Nichtlinearitäten im System vorhanden, werden diese linearisiert und somit nicht berücksichtigt. Dies können z.B. Zugstäbe, nichtlineare Auflager oder nichtlineare Gelenke sein. In diesem Beitrag soll gezeigt werden, wie diese in einer dynamischen Analyse behandelt werden können.
Das Antwortspektrenverfahren zählt zu den am häufigsten verwendeten Bemessungsmethoden im Erdbebenfall. Dieses Verfahren hat viele Vorteile. Der Bedeutendste ist wohl die Vereinfachung: Es vereinfacht die Komplexität eines Erdbebens so weit, dass ein Nachweis mit vertretbarem Aufwand geführt werden kann. Der Nachteil dieser Methode ist wiederum, dass durch diese Vereinfachung viele Informationen verloren gehen. Eine Möglichkeit diesen Nachteil abzumildern, ist die Anwendung der äquivalenten Linearkombination bei der Kombination der Modalantworten. Das soll in diesem Beitrag durch ein Beispiel näher erläutert werden.
Die Ereignisse der letzten Jahre erinnern uns daran, wie wichtig erdbebensicheres Bauen in gefährdeten Regionen ist. Sie als Ingenieur müssen beim Entwerfen von Bauwerken permanentes zwischen Wirtschaftlichkeit – und den finanziellen Möglichkeiten – sowie der statischen Sicherheit abwägen. Ist ein Kollaps unvermeidlich, bewerten Sie, wie sich dieser auf das Bauwerk auswirkt. Dieser Artikel soll Ihnen eine Option aufzeigen, wie Sie diese Bewertung durchführen können.
Der Einsatz von RFEM 6 und Blender mit dem Bullet Constraints Builder Add-on zielt darauf ab, den Einsturz eines Modells auf der Grundlage echter physikalischer Eigenschaftsdaten grafisch darzustellen. RFEM 6 dient dabei als Geometrie- und Simulationsdatenquelle. Der Beitrag behandelt ein weiteres Beispiel, das zeigt, warum es wichtig ist, unsere Programme als sogenanntes BIM Open zu pflegen, um eine Zusammenarbeit über viele Softwarebereiche hinweg zu erreichen.
In diesem Beitrag wird das Add-On Gebäudemodell vorgestellt, das um einen bedeutenden Vorteil erweitert wurde: die Berechnung des Schwerpunktes von Masse und Steifigkeit.
Das Add-on "Modalanalyse" in RFEM 6 ermöglicht die Modalanalyse von Tragwerken und damit die Ermittlung von Eigenschwingungsgrößen wie Eigenfrequenzen, Eigenformen, modalen Massen und effektiven Modalmassenfaktoren. Diese Ergebnisse können für Schwingungsuntersuchungen sowie weitere dynamische Analysen (z. B. Belastung mittels Antwortspektrum) verwendet werden.
Die dynamische Berechnung in RFEM 6 und RSTAB 9 ist in mehrere Add-Ons gegliedert. Das Add-On Modalanalyse ist Voraussetzung für alle anderen Add-Ons zur dynamischen Berechnung, da es die Eigenschwingungsanalyse für Stab-, Flächen- und Volumenmodelle durchführt.
Die Modalanalyse ist der Ausgangspunkt für die dynamische Analyse statischer Systeme. Damit können Eigenschwingungsgrößen wie Eigenfrequenzen, Eigenformen, modale Massen und effektive Modalmassenfaktoren ermittelt werden. Dieses Ergebnis kann bereits für die Schwingungsbemessung und auch für weitere dynamische Untersuchungen (z. B. Belastung durch ein Antwortspektrum) verwendet werden.
Die Erdbebenanalyse in RFEM 6 ist mit den Add-Ons Modalanalyse und Antwortspektrenverfahren möglich. Sobald die Spektralanalyse durchgeführt wurde, können mit dem Add-On Gebäudemodell Geschosseinwirkungen, Geschossverschiebungen und Kräfte in Wandscheiben abgebildet werden.
Die Erdbebenanalyse in RFEM 6 ist mit den Add-Ons Modalanalyse und Antwortspektrenverfahren möglich. Das allgemeine Konzept der Erdbebenanalyse in RFEM 6 basiert auf der Erstellung eines Lastfalls für die Modalanalyse bzw. das Antwortspektrenverfahren. Die Normgruppe für diese Analysen wird im Register Normen II der Basisangaben des Modells festgelegt.
Explosionslasten aus energiereichen Explosivmitteln bzw. Sprengstoffen, ob nun zufällig oder absichtlich, sind selten, können jedoch eine statische Bemessungsanforderung darstellen. Diese dynamischen Lasten unterscheiden sich von normalen statischen Lasten durch ihre erhebliche Größe und sehr kurze Dauer. Ein Explosionsszenario kann direkt in einem FEM-Programm als Zeitverlaufsanalyse durchgeführt werden, um die Verletzung des Lebens von Personen zu minimieren und das Ausmaß von Gebäudeschäden zu bewerten.
Mit dem Zusatzmodul RF-/HOLZ Pro ist es möglich, für die Bemessung nach EN 1995-1-1 den aus der DIN 1052 bekannten Schwingungsnachweis zu führen. Dieser besagt, dass unter ständiger und quasi-ständiger Einwirkung die Durchbiegung am ideellen Einfeldträger einen Grenzwert (nach DIN 1052 6 mm) nicht überschreiten darf. Wenn man den Zusammenhang zwischen Eigenfrequenz und Durchbiegung für einen mit konstanter Streckenlast belasteten, gelenkigen Einfeldträger berücksichtigt, so resultiert aus den 6 mm eine Mindesteigenfrequenz von zirka 7,2 Hz.
In RFEM kann an vielen Stellen eine Modifizierung von Steifigkeiten für Materialien, Querschnitte, Stäbe, Lastfälle und Lastkombinationen erfolgen. Um diese Modifizierungen auch bei der Ermittlung der Eigenfrequenzen zu berücksichtigen, gibt es zwei Optionen in RF-DYNAM Pro.
Mit RF-/DYNAM Pro Ersatzlasten ist es möglich, eine Ersatzlastberechnung anhand des multimodalen Antwortspektren-Verfahrens zu durchzuführen. Im dargestellten Beispiel wurde dies für einen Mehrmassenschwinger durchgeführt.
Der National Building Code of Canada (NBC) 2015 Artikel 4.1.8.7 sieht ein klares Verfahren für Erdbebenanalysemethoden vor. Die fortgeschrittenere Methode, nämlich das Verfahren der dynamischen Analyse in Artikel 4.1.8.12, sollte für alle Tragwerkstypen verwendet werden, mit Ausnahme derjenigen, die die Kriterien in 4.1.8.7 erfüllen. Die einfachere Methode, das Ersatzkraftverfahren (Equivalent Static Force Procedure (ESFP)) in Artikel 4.1.8.11, kann für alle anderen Tragwerke verwendet werden.
In diesem Beitrag werden Abbildungen eines Explosionsszenarios einer Ferndetonation in RF-DYNAM Pro - Erzwungene Schwingungen dargestellt und die Auswirkungen im linearen Zeitverlaufsverfahren verglichen.
Mit Hilfe der Modalanalyse in DYNAM Pro - Erzwungene Schwingungen kann für periodisch angeregte Strukturen die stationäre Systemantwort ermittelt werden. Das ist von Vorteil, wenn nur der eingeschwungene Zustand der Struktur von Interesse ist. Anstatt der vollständigen Lösung der Bewegungsgleichung wird nur die spezielle Lösung ausgegeben.
Das Antwortspektrenverfahren zählt zu den am häufigsten verwendeten Bemessungsmethoden im Erdbebenfall. Dieses Verfahren hat viele Vorteile. Der Bedeutendste ist wohl die Vereinfachung: Es vereinfacht die Komplexität eines Erdbebens so weit, dass ein Nachweis mit vertretbarem Aufwand geführt werden kann. Der Nachteil dieser Methode ist wiederum, dass durch diese Vereinfachung viele Informationen verloren gehen. Eine Möglichkeit diesen Nachteil abzumildern, ist die Anwendung der äquivalenten Linearkombination bei der Kombination der Modalantworten. Das soll in diesem Beitrag durch ein Beispiel näher erläutert werden.