Ein entscheidender Schritt bei der Numerischen Strömungsmechanik (Computational Fluid Dynamics - CFD) ist es, ein Validierungsbeispiel zu erstellen, um Genauigkeit und Zuverlässigkeit der Simulationsergebnisse zu gewährleisten. Bei diesem Vorgang werden die Ergebnisse der CFD-Simulationen mit experimentellen oder analytischen Daten aus realen Szenarien verglichen. Es soll der Nachweis erbracht werden, dass das CFD-Modell die physikalischen Phänomene, die es simulieren soll, wirklichkeitsgetreu abbilden kann. In diesem Beitrag werden die wesentlichen Schritte bei der Entwicklung eines Validierungsbeispiels für die CFD-Simulation erläutert, von der Auswahl eines geeigneten physikalischen Szenarios bis zur Analyse und dem Vergleich der Ergebnisse. Bei sorgfältiger Einhaltung dieser Schritte können sowohl Ingenieure als auch Experten in Forschung und Entwicklung die Glaubwürdigkeit ihrer CFD-Modelle erhöhen und so den Weg für deren effektiven Einsatz in verschiedenen Bereichen wie der Aerodynamik, der Luft- und Raumfahrttechnik sowie der Umwelttechnik ebnen.
5 Sterne | ||
4 Sterne | ||
3 Sterne | ||
2 Sterne | ||
1 Stern |
Würfel - Validierungsbeispiel
Dieses Statikmodell können Sie herunterladen, um es für Übungszwecke oder für Ihre Projekte einzusetzen. Wir übernehmen jedoch keine Garantie und Haftung für die Richtigkeit sowie Vollständigkeit des Modells.


.png?mw=512&hash=4a84cbc5b1eacf1afb4217e8e43c5cb50ed8d827)


In RFEM 6 existiert eine hierarchische Regelung zwischen Lastübertragungsflächen und Decken im Gebäudemodell. Dadurch sind auch Wände aus Lastübertragungsflächen möglich, z. B. zur Berücksichtigung von vorgehängten Fassaden.

Im Add-On 'Nichtlineares Materialverhalten' steht Ihnen für Bauteile aus Beton das Materialmodell Anisotrop | Beschädigung zur Verfügung. Mit diesem Materialmodell ist es möglich, die Schädigung des Betons für Stäbe, Flächen und Volumenkörper zu berücksichtigen.
Sie können ein individuelles Spannungs-Dehnungs-Diagramm über eine Tabelle definieren, die parametrische Eingabe zur Generierung des Spannungs-Dehnungs-Diagramms nutzen oder die vordefinierten Parameter der Normen verwenden. Zusätzlich ist es möglich, den Effekt der Zugversteifung zu berücksichtigen.
Für die Bewehrung stehen die beiden nichtlinearen Materialmodelle 'Isotrop | Plastisch (Stäbe)' und 'Isotrop | Nichtlinear Elastisch (Stäbe)' zur Verfügung.
Die Berücksichtigung von Langzeiteffekten aus Kriechen und Schwinden ist durch den neu freigegebenen Analysetyp 'Statische Analyse | Kriechen & Schwinden (linear)' möglich. Kriechen wird durch die Streckung des Spannungs-Dehnungs-Diagramms des Betons mit dem Faktor (1+phi) berücksichtigt und Schwinden als Vordehnung des Betons. Detailliertere Zeitschrittanalysen sind mit dem Add-On „Zeitabhängige Analyse (TDA)“ möglich.

Im Add-On Betonbemessung besteht für Sie die Möglichkeit, die erforderliche Längsbewehrung für die direkte Rissbreitenberechnung (wk) zu ermitteln.

Bei der Bemessung von Stahlbetonstäben kann optional die Stabanzahl oder der Stabdurchmesser automatisch ermittelt werden.
Wie kann ich die Ermittlung der erforderlichen Bewehrung nachvollziehen?
Wie kann ich die ausreichende Gesamtsimulationszeit für eine genaue instationäre Windanalyse in RWIND bestimmen?