DUENQ | Querschnittskennwerte und Spannungen
Feature
DUENQ berechnet die Querschnittswerte und Spannungen für beliebige offene, geschlossene, verbundene oder nicht zusammenhängende Profile.
Querschnittskennwerte- Gesamtfläche A
- Schubflächen Ay, Az, Au und Av
- Schwerpunktlage yS, zS
- Flächenmomente 2. Grades Iy, Iz, Iyz, Iu, Iv, Ip, Ip,M
- Trägheitsradien iy, iz, iyz, iu, iv, ip, ip,M
- Hauptachsenneigung α
- Querschnittsgewicht G
- Querschnittsoberfläche U
- Torsionsflächenmomente 2. Grades IT, IT,St.Venant, IT,Bredt, IT,s
- Schubmittelpunktlage yM, zM
- Wölbwiderstände Iω,S, Iω,M bzw. Iω,D bei gebundener Drillachse
- Max/Min-Widerstandsmomente Wy, Wz, Wu, Wv, Wω,M mit Lageangabe
- Querschnittsstrecken ru, rv, rM,u, rM,v
- Abklingfaktor λM
- Normalkraft Npl,d
- Querkräfte Vpl,y,d, Vpl,z,d, Vpl,u,d, Vpl,v,d
- Biegemomente Mpl,y,d, Mpl,z,d, Mpl,u,d, Mpl,v,d
- Widerstandmomente Wpl,y, Wpl,z, Wpl,u, Wpl,v
- Schubflächen Apl,y, Apl,z, Apl,u, Apl,v
- Lage der Flächenhalbierenden fu, fv
- Darstellung der Trägheitsellipse
- Statische Momente Su, Sv, Sy, Sz mit Angabe von Maxima und Ort sowie Richtung des Schubflussverlaufes
- Wölbordinaten ωM
- Flächenmomente (Wölbflächen) Sω,M
- Zellenflächen Am bei geschlossenen Querschnitten
- Normalspannungen σx aus Normalkraft, Biegemomenten und Wölbbimoment
- Schubspannungen τ aus Querkräften sowie primären und sekundären Torsionsmomenten
- Vergleichsspannungen σv mit anpassbarem Faktor für Schubspannungen
- Ausnutzungsgrade bezogen auf die zulässigen Spannungen
- Spannungen an Elementkanten oder Mittellinien
- Schweißnahtspannungen in Kehlnähten
- Querschnittswerte nicht zusammenhängender Querschnitte (Hochhauskerne, Verbundprofile)
- Teilquerschnittsquerkräfte aus Biegung und Torsion
- Plastische Berechnung mit Ermittlung des Vergrößerungsfaktors αpl
- Überprüfung der (c/t)-Verhältnisse nach dem Nachweisverfahren el-el, el-pl oder pl-pl gemäß DIN 18800
Schreiben Sie einen Kommentar...
Schreiben Sie einen Kommentar...
- Aufrufe 2306x
- Aktualisiert 16. März 2022

Neu
CSA S16:19 Berücksichtigung von Stabilität und Neuer Anhang O.2
Das Verfahren CSA S16:19 Stabilitätseffekte in elastischen Berechnungen in Anhang O.2 ist eine Alternative zum Vereinfachten Stabilitätsanalyseverfahren in Abschnitt 8.4.3. In diesem Beitrag werden die Anforderungen des Anhangs O.2 und die Anwendung in RFEM 6 beschrieben.

DUENQ enthält eine umfangreiche Bibliothek von Walzprofilen und parametrisierten Profilarten. Diese können zusammengesetzt oder mit neuen Elementen ergänzt werden. Der Aufbau eines Profils aus unterschiedlichen Materialien gelingt problemlos.
Grafische Tools und Funktionen erlauben die Modellierung komplexer Querschnittsformen in CAD-Arbeitsweise. Die grafische Eingabe unterstützt u. a. das Setzen von Punktelementen, Kehlnähten, Bögen, parametrisierten Rechteck- und Rohrquerschnitte, Ellipsen, elliptische Bögen, Parabeln, Hyperbeln, Splines und NURBS. Alternativ wird eine DXF-Datei eingelesen und als Basis für die weitere Modellierung genutzt. Auch können Hilfslinien für die Modellierung genutzt werden.
Des Weiteren ermöglicht eine parametrisierte Eingabe, Modell- und Belastungsdaten so einzugeben, dass sie von bestimmten Variablen abhängig sind.
Elemente können grafisch geteilt oder an ein anderes Objekt angefügt werden. DUENQ nimmt die Teilungen automatisch vor und stellt mit Nullelementen sicher, dass der Schubfluss nicht unterbrochen wird. Für Nullelemente kann eine spezifische Dicke zur Schubübertragung festgelegt werden.
- Die Lastverteilung auf meine Stäbe sieht anders aus, wenn die Lastübertragungsfläche im Vergleich zu den Lastassistenten verwendet wird. Was ist der Grund dafür?
- Mein Träger hat eine kontinuierliche seitliche Abstützung und daher ist Biegedrillknicken (BGDK) nicht von Belang. Wie definiere ich die Knicklänge?
- Ich erhalte eine Fehlermeldung „Flächen mit inkompatiblem Typ... (Flächen in der obersten Ebene von Geschossen müssen vom Typ "Lastübertragung" sein), wenn ich die Berechnung ausführe. Was ist der Grund dafür?